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Task

ChimeraTK is a software toolkit that aims to facilitate the design of control applications for
register-based hardware. One of the included libraries is DeviceAccess. It offers one common
interface for a multitude of different devices and their respective protocols. It enables the user to
focus on the task at hand while skipping many of the implementation details for the different
hardware backends.

DeviceAccess is written in C++, a compiled language. For interactive workflows and quick
configuration changes, an interpreted language like Python is often preferable. A Python binding
of the DeviceAccess functions was available very early. They do not cover the features of
the continued development of the C++ library and need to be updated. This extension and the
associated motivation are the main topics of this thesis.

Abstract

This thesis covers the process of extending the ChimeraTK DeviceAccess library for Python
users.

The ChimeraTK framework is used to work with register-based hardware devices. One of its
lowest layer libraries is the DeviceAccess component. It offers a unified function interface to
manipulate data on a multitude of connected equipment.

DeviceAccess is a C++ library. Working with C++ requires a compilation stage for every change in
the routine of a derived program. Python is a scripted language. It is an ideal tool for automation
and other work that benefits from its interactive nature. To facilitate the use of DeviceAccess in
these cases, a binding was published to offer Python methods for the original C++ codebase. Over
the past years, DeviceAccess was updated in functionality. The changes are yet missing from
the Python bindings. The main addition is the introduction of accessor objects, that represent
device registers. They enable blocking reads and thus ways of synchronization in the form of
push-type accessors.

The coverage of the bindings increased dramatically with the added work from this thesis.
That includes the addition of new accessor types and the coverage of more methods from the
original library. The required work also allows refactoring of the codebase while keeping legacy
programs functional. The complete code was formatted with type hints and function annotations.
A small number of less frequently used elements of the DeviceAccess library are yet to be
implemented. These can be added in future updates as the foundation is already planned out
accordingly.
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1 Introduction

The ChimeraTK DeviceAccess library’s first bindings were offered for MATLAB and Python.
In the early stages of the project, the two versions offered the same functionality as the C++

implementation.

The user had to allocate memory and include the location with the call to read and write data
from and to devices. MATLAB and Python deviate from the C++ concepts of references. As an
alternative, the bindings used an existing data structure as a function argument to be used for the
operation. The resulting Python release relied heavily on copy mechanics.

While an increase in speed and a more Pythonic interface are desirable, they were not necessarily
enough to justify a complete rework. Meanwhile, the C++ library evolved and came with a
more concise idea to access devices. The accessor class integrates a user-side buffer, that is
independent of the memory of a linked device. This decouples the work on the data from the
status of the register and binds both to the same object. This design is quintessential for the
implementation of blocked reads, where the device is in charge of the control flow on the host
computer.

The introduction of register accessors thus made synchronizations possible. This is a crucial
feature for the development of control applications and automation. Synchronization is thus the
main motivation to extend the Python bindings for the ChimeraTK DeviceAccess library.

The general guideline in this work is to keep the Python workflow close to the original C++

approach. The respective languages sometimes use different principles to solve problems. Some
of these mechanics hinder a straightforward implementation of the DeviceAccess bindings. This
thesis aims to give reasons and examples for the resulting usage differences and the underlying
design.

-
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2 Fundamentals

2.1 ChimeraTK DeviceAccess

ChimeraTK is the abbreviation for Control system and Hardware Interface with Mapped and
Extensible Register-based device Abstraction Tool Kit. The project is open source and published
under the GNU Lesser General Public License v3.0 on GitHub [DESa]. Ubuntu 20.04 packages
for the toolkit are available as well. ChimeraTK is maintained by the MSK1 software group at
DESY2.

The DeviceAccess library is one of the fundamental layers of the toolkit. It functions as the
abstraction layer to hardware on several backends3 and provides one unified interface to the user
[Var+17]. The library exposes the hardware via devices that are structured through register paths.
DeviceAccess uses register accessor types for the user to read and write data. An accessor is
a mutable object with a local user-side buffer and a reference to the memory of the assigned
device register. The split between the two data locations is essential for complex control patterns
like device-controlled blocking reads. As these accessors are fundamental to the extension of
the bindings, they are discussed in depth in chapter 3.

2.2 Language Characteristics

The original ChimeraTK-DeviceAccess source code is written and accessed in modern C++.
There are several options to call its functions in completely different language families. Important
use cases are interactive automation tasks with Python. As C++ and Python have some distinct
features, it is sensible to look at their characteristics.

C++

Designed in 1985, C++ quickly became one of the most used programming languages for
resource-oriented, high-performance and system-level applications [Lut00]. The fine-grained
memory management and high-speed execution makes it optimal for the intentions of the
ChimeraTK framework.

C++ is a compiled language. Every change in the codebase needs to be compiled into machine
code to take effect. Depending on the size of the involved codebase and the tied libraries, it
can be a long process, until the newly compiled program is ready to be used. While this effort
is often negligible in the life cycle of many applications, it interferes heavily with a workflow
where changes happen frequently.

1. Maschine Strahlkontrollen (https://msk.desy.de/)
2. Deutsches Elektronen-Synchrotron (https://desy.de/)
3. PCI, XDMA, DOOCS, Modbus, OPC UA, EPICS, and several more.
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Python

Python’s use is very broad and has applications in a variety of academic fields [Staa]. It is
supposed to be one of the easier programming languages to learn, as the high-level syntax is
relatively easy to read and write [Die14].

In contrast to C++ Python is an interpreted language. The source code is translated into an
intermediate representation and directly executed. This method cannot reach the execution speed
of a program that is already available in a compiled form, but it has its purpose in interactive
scenarios. The main use case for the bindings of this thesis are automation scripts, that can be
easily modified for different scenarios.

2.3 Libraries of Interest

While many libraries are used for this project, two of them are crucial to the functionality of the
bindings that are presented in this thesis. The first is Boost, which offers interoperability between
C++ and Python. The second is NumPy, which has acclaimed widespread use to efficiently
manage data structures like vectors and matrices.

Boost

Boost is a collection of C++ libraries that enable support for linear algebra, unit testing, and
more. Many additions have since been incorporated into the C++ standard, like regex, optional or
smart pointers [Stac] [Muk15].

The boost library also offers the "Boost Python Bindings" [Boo], which are essential for the
DeviceAccess bindings of this thesis. Boost Python offers a compact method to build python
importable libraries that link to C++ files. They are written in C++ and once compiled, they
require no further steps to be accessed in interactive Python environments or scripts.

There are certain limitations in the functionality of the Boost library, like documentation,
template handling, and inheritance. For this reason, the DeviceAccess bindings are layered to
offer a more concise interface for the user. More information on the design can be found in
section 4.1.

NumPy

NumPy is a widely-used Python library that offers support for arrays, matrices, and fast mathe-
matical operations with these data structures. [Bre12].

The ndarray class is the pillar of the NumPy data representation. It is also the focal point for the
connection of NumPy and the DeviceAccess library. To the user, it presents as an n-dimensional
array, a structured collection of homogenously typed elements. Internally, it is a strided view of
a memory location [WCV11]. In contrast to a normal Python list, the information has a high
locality; it is supplied from a single memory block and not spread around in different chunks.
Using vectorization and the avoidance of many copy operations, the library is often a magnitude
faster than a pure Python implementation [Oli07].
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The ndarray class is already used as input variables in the legacy version of the bindings. This
thesis leverages the properties of the ndarray even further, by designing the new accessors
as a subclass object. The similarities of the C++ register accessors and the ndarray make the
inheritance mechanism an ideal choice for the implementation of a Python accessor class.
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3 Register Accessors

Without any knowledge of the underlying system, the most basic approach to access data from
the real world would probably be the following: A user knows the location of the sensor they
would like to access and can then ask the sensor to deliver its data and any additional meta
information it might have.

This process is very similar to the design of the Register Accessors. With the address of the
device1, the user can open registers to access the desired information. Registers can return
the data in different form factors: a matrix, an array, a scalar, or some kind of trigger. For
time-sensitive processes, it is significant if the information is polled from the device or pushed
by it.

It is important to point out that there are two storage spaces for the device data. One location is
remote, supplied by the device, and the other one is local: the user buffer. As the name implies,
this buffer keeps the data with the user until it is ready to be written to the device. When data is
read from a device, the new information is copied to this buffer. Due to the decoupling, the user
can manipulate the buffer in multiple steps and trigger a write procedure when finished.

It might be okay to just access the raw data on the device, a conversion to a desired precision or
size is often quite valuable to the user’s workflow. To avoid mistakes in type conversions, the
register accessors allow being set to a certain user type, which can be selected independently
from the actual data type on the device.

1. As outlined in section 4.2
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Feature Legacy Bindings New Bindings

User Types:
np.int32 � X
np.int16 � X
np.int8 � X
np.uint8 � X
np.int16 � X
np.uint16 � X
np.int32 � X
np.uint32 � X
np.int64 � X
np.uint64 � X
np.float32 � X
np.float64 X X
np.doublea X X
np.floata X X
np.str_ � �p

np.bool � �p

np.void � �p

a
Alias of np.float64.

p
Planned for the future.

Table 3.1: User Type Overview and Comparison

3.1 Accessor Types

Several register accessor types are available to the user. The main accessor group is concerned
with the actual information on the device. There are three types with different dimensionalities.

Most of the time the user wants to know the numerical value of an event, while sometimes the
existence of new data is more important than whatever value it might have. For this occasion, a
specialized void accessor type treats the signal as a pure trigger.

User Types

When the user wants to get a register accessor from the device, they have to state the desired
register path and the user type. This is a convenience function for the user. It supplies the
automatic conversion and correct rounding from the implemented format on the device to the
requested user type. Examples of these are (un)signed integers or floating point numbers in
different widths2. A complete overview of all possible user types is given in Table 3.1. The table
also shows the current coverage compared to the legacy bindings.

2. Sometimes it is useful to set or read actual raw data. There is no specific raw type. For this use case, it is possible
to pass the raw access modifier flag.
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Scalar, 1D & 2D

To gather information from the device, the registers are available in three dimensionalities: scalar,
one– or two-dimensional. For the implementation, there are some key differences between the
three, but for the user, it mostly depends on the desired format. If they use a 2D accessor to
access one-dimensional registers, they still receive a matrix type. The same is true for a 1D
register accessor that is tied to a scalar value. The interface will return a vector with a single entry.
The different accessors have some additional functions to inform the user about the number of
rows and columns, where available.

Void

Void accessors are special, as they are intended to trigger events. The actual intensity of the
signal is not of interest. Therefore, they do not have a user type, as there is nothing to convert
from. In the standard form, their concept is only sensible for sending triggers to the device. A
request to read no data, or rather a wish to receive nothing, is pointless. The concept of waiting
for a trigger is covered by push and poll types.

Push and Poll Types

Sometimes it is desirable or even crucial to synchronize control flows between different parties.
One direction is triggering events on the device from the host by writing to certain registers.
The other direction is changing the behavior of the host when information on the device has
changed.

There are two ways to achieve this: polling and pushing. Constant polling of the device to see
if the data has changed can block the device from other tasks. Also, it might not be frequent
enough to catch the trigger on time. The alternative is pushing. The control flow is transferred to
the device. The accessor has to wait until the linked register has updated information. To create
such an accessor it has to be requested with the wait_for_new_data access modifier flag from
the device. A complete example with source code can be found in Listing 7.4.

3.2 Implementation

A premise for the Python bindings is to supply a library, which usage is close to the C++ version,
but also as Pythonic as possible. To retain consistency over the project, all names are taken from
the original library, including the naming style 3.

Keeping the workflow consistent over the two languages avoids reinventing the wheel and lever-
ages the well-established concept of the base project. Both languages have their differences that
are not always feasible. First, some C++ mechanics are not available in Python. Secondly, typical
Pythonic methodology might have different expectations for the behavior of data structures.

3. While the PEP8 guidelines suggest lower case with underscores, it also recommends to keep the prevailing style
(https://peps.python.org/pep-0008#function-and-variable-names).
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1 // There is an open device called ’toaster’, which has an internal
temperature setting that should be changed

2 ChimeraTK::ScalarRegisterAccessor<float> temperatureSetPoint =
toaster.getScalarRegisterAccessor<float>("TEMP_SET_POINT");

3
4 // Treat the accessor as if it was a regular float variable.
5 temperatureSetPoint = 250.9;
6
7 //After the manipulation, data can be written to the device.
8 temperatureSetPoint.write();

Listing 3.1: Direct Assignment to the User Buffer in C++

NumPy implementation

The original C++ interface provides vectors of a certain numerical type as a user buffer. A Python
equivalent would be a list or a general sequence. A vector of vectors translates well into a list of
lists to handle 2D accessors.

The standard Python data structures are often replaced by their NumPY equivalent for their
added functionality and performance. In support of this workflow, the legacy bindings were
already able to work with NumPy arrays as method parameters. To facilitate the usage even
more the new register accessors are implemented as a NumPy ndarray subclass. The added
inheritance makes the Python accessors a fusion of all methods from the C++ register accessors
and the NumPy array. This way there is no further conversion or copying before the data from
the devices can be fed into any existing NumPy workflows and vice-versa.

Data Access and Manipulation

C++ offers a lot of freedom as far as redefining core elements like assignment operators. In
the original library, this is used as a comfortable shortcut to edit the user buffer, as seen in
Listing 3.14. The implementation also enables the user to use accessors directly in calculations
like vectors, or vectors of vectors, without the need to point to the user data that is only a part of
the actual class.

The inheritance from the NumPy ndarray can mimic this behavior to a certain degree. Unfor-
tunately, a direct assignment cannot be overwritten in Python. It is thus not possible to copy
the original behavior. The = operator would assign the array or scalar to the variable instead
of the user buffer of the accessor. Even for mutable types such as list and ndarray, Python
cannot be modified. An example can be seen in Listing 3.2. The variable array is first assigned
to a NumPy array type and then to a standard list type. To keep the array from being garbage
collected, it was also assigned to alias, to show the content of the ndarray. It can be seen
that array and lst variables are referencing the same object after the new assignment, but the
original ndarray remains unchanged. Therefore = cannot be used to change the user buffer. A
Python alternative to the direct assignment is provided in form of the set method, as shown in
Listing 3.3, line 20.

4. Modified code from [DESb].
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1 >> array = np.array([1, 2, 3])
2 >> alias = array
3 >> print(alias)
4 [1 2 3]
5 >> lst = [4, 5, 6]
6 >> print(type(array))
7 <class ’numpy.ndarray’>
8 >> array = lst
9 >> print(type(array))
10 <class ’list’>
11 >> array[2] = 99
12 >> print(array)
13 [4, 5, 99]
14 >> print(lst)
15 [4, 5, 99]
16 >> print(alias)
17 [1 2 3]

Listing 3.2: Direct Assignment to a Mutable Type in Python

1 >> # ’thickness’ is a 1D accessor of user type int16.
2 >> # It contains 4 measurement points for the inserted bread
3 >> # of an advanced toaster.
4 >> print(type(thickness))
5 <class ’deviceaccess.OneDRegisterAccessor’>
6 >> thickness
7 OneDRegisterAccessor([0, 0, 0, 0], dtype=int16)
8 >> # It can be read from, like an accessor:
9 >> thickness.read()
10 >> thickness
11 OneDRegisterAccessor([10, 11, 12, 8], dtype=int16)
12 >> # It also has all methods of an ndarray:
13 >> print(thickness.min())
14 8
15 >> # ’heater’ is a scalar accessor of user type int8. It controls the

temperature of the toaster.
16 >> heater.read()
17 >> print(heater)
18 [200]
19 >> # Accessors can be used like a standard NumPy ndarray. For example

by using the smallest element from the thickness accessor to set a
new value of the heater

20 >> heater.set(200 + thickness.min()*5)
21 >> print(heater)
22 [280]
23 >> heater.write()

Listing 3.3: Behavior of the Python Register Accessor

9



1D and 2D arrays inherit from the respectively sized NumPy ndarray and thus work like
vectors and matrices. The scalar version implementation is inconsistent and does not map to the
respective NumPy scalar type. As seen at the end of Listing 3.3, the scalar register accessors
representation is not scalar. It is implemented as a 1D ndarray with a single element. Although
real scalar types exist in NumPy, they are immutable [Num]. As a superclass of a scalar register
accessor, they are thus unusable.
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4 Design

4.1 Layer Model

Figure 4.1 presents the internal hierarchy of a fictional use case. The diagram shows a highly con-
nected household with different hardware devices that are connected through various backends
and protocols.

Together with the C++ DeviceAccess library, the user can take the Python bindings package to
control the appliances via a Python script. For the correct name mapping to the devices, the user
also needs configuration files that would be handled by the group that integrated the hardware
into the network (see the section 4.2).

The Python bindings package itself is structured into two parts. There is an interface, that is
exposed to the user. It is dependent on a second library, that is directly accessing the original C++

implementation. This interconnecting library is therefore often referenced as the middle layer. It
serves as a routing point to offer all C++ functions to the interface layer. For legacy purposes
the old mtca4u.py interface is still included in the bindings package. It uses the same middle
layer.

The extra interface layer on top of the Boost bindings has three main reasons. Firstly, the interface
serves as a unifying abstraction layer on top of the middle layer. Due to the Boost library, the
interface would otherwise be very different from the C++ workflow1. Secondly, writing the
interface in Python offers better ways for the implementation of the documentation and type
annotation than the C++ based Boost Python library. The last reason is the inheritance relationship
to NumPy’s ndarray, which cannot be represented within the Boost Python system.

The two-layer structure thereby acts as a separation between the necessary structure of the Boost
part and the actual interface that is streamlined for the user experience. The interface library
deviceAccess.py is supposed to act to the user as if they were accessing the C++ interface from
the original toolkit.

4.2 Hardware Access

The user can interact with the hardware in the form of a configuration file, that links the logical
register paths to their actual backend addressing structure. This is a very convenient form of
abstraction. The actual sensors, triggers, and actuators might be in different locations, connected
to a multitude of backends and servers. For the logical division of the control system, it is easier
to group and arrange them in a hierarchical structure.

1. The C++ implementation is using templates, which transform into a multitude of classes and methods after the
Boost binding process. One for each user type. The goal of the bindings is to mimic the condensed behavior of
the original bindings. This is achieved by adding the interface layer. See chapter 5 for more insight on the boost
integration.
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Figure 4.1: Modell of the Python Bindings with Use Case
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The example in Figure 4.1 covers a fictional household with a coffee machine, a smart toaster,
and electrical curtains, with connections through PCIe, Modbus, and DOOCS2. The user does
not need to know the details of the attached hardware. It can be structured in a hierarchical,
easy-to-use structure. Instead of looking up the corresponding PCIe banks that are linked to
the water level sensor of the coffee maker, a register accessor can be obtained through an
easy-to-remember path like kitchen/coffeemaker/waterlevel. The topology and grouping
of the aliases are completely independent of their respective hardware integration.

2. Distributed Object-Oriented Control System Framework (https://doocs-web.desy.de/)
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5 Optimization and Refactoring

5.1 Optimization

NumPy and Boost Update

In an early iteration of the bindings, a Boost Python numeric class was used as a container for
the register’s user buffer. This was changed to support NumPy’s ndarray. The actual array was
not a class field. It was passed as a variable. The conversion to and from the C++ accessor’s user
buffer was achieved through a chain of copying and casting operations.

In the meantime, the Boost library has gained official support for the ndarray data type. Boost
intended this to directly use the Python container and its methods in C++. The C++ code is
already existing in form of the DeviceAccess library. The Boost implementation of the ndarray

nevertheless proves helpful. It allows skipping some of the previous workarounds to integrate the
NumPy class into the Boost workflow. The resulting code is easier to understand and maintain.

The legacy bindings are writing and reading data from a separate NumPy object, that is supplied
during the function call. The new Python accessor is also a ndarray. It does not need an external
object to keep the user buffer. The updated bindings can consequently avoid the additional object
in the signature of the method. This usage is closer to the C++ version.

Zero-Copy

A big performance improvement can be obtained by finding and eliminating needless operations.
The goal of zero-copy techniques is to avoid duplicates of data. When the information is already
available to the system, it might be faster to access this region directly instead of copying,
working with the duplicate, and writing the changes back to the original location.

The current structure of the bindings has accessors, that inherit from NumPy’s ndarray to
represent the user buffer. This buffer is now present at two different locations. One is in the form
of the C++ accessor implementation that is called from the middle layer’s boost bindings. Another
is given in the form of the NumPy Array. Every read and write calls copy operations between
these two memory regions. It would save bandwidth and CPU time to skip the duplication and
act directly on the data of the original C++ accessor’s user buffer.

One of the requirements is a similar form of data-structure for the two regions. Just because the
information is the same, the arrangement might differ significantly. A transformation operation
might be costlier than copying each element.

The ndarray and the original accessors are compatible in that regard, as they both built on a
high locality of their data. There is a function in NumPy, that work with C++ based memory
pointers. Some copy operations might become avoidable with it.

14



Unfortunately, the respective function did not work with all tests, that were conducted during
this thesis1. The respective parts are still included in the source code, to facilitate a move in the
future. The main usage scenarios of the bindings are not focused on speed or resources. The
extra copy step is currently not hindering the functionality of the bindings.

Generally, a zero-copy implementation can cover the scalar and 1D accessor. The target buffer
has to be accessible as a coherent block. The current version of the C++ 2D accessor does not
guarantee this requirement and would consequently not benefit from a zero-copy functionality.

5.2 Refactoring

The division into a user-facing interface and the compiled middle layer has been mentioned
several times. One reason is the easier integration of documentation features, another point is
the abstraction from implementation details.

The bridge between C++ and Python is realized via Boost’s Python bindings in a compiled
_da_python_bindings.so2 file. It covers all functions, classes, and methods that are available
in the original library.

The feature extension in this version is mainly focused on accessors. There are four accessor
varieties in the toolkit: void, scalar, 1D, and 2D. C++ offers templates as generics to increas code
reusability. Scalar, 1D, and 2D can be used with each of the 15 user types (see Table 3.1). The
way templates are routed in the Boost Python library, the resulting middle layer has 46 accessor
classes3.

The user does not need to navigate these, as they use the reduced interface from the
DeviceAccess.py file. The handling of the different accessor classes is abstracted into a single
parameter of a unified class. When the user requests an accessor from the device, they get a
user-type independent class. Internally this class accesses the correct corresponding accessor
objects from the middle layer.

While some register accessor dimensions need unique methods, they also cover all 19 base
functions like write, read or getDescription (see Table 5.14). To bundle these, scalar, 1D, and
2D accessors inherit from a GeneralRegisterAccessor class5. The interaction between the middle
layer, the user-facing interface and the C++ DeviceAccess library is illustrated in Figure 5.1.
It can be seen how the templated C++ classes are split up into their respective Boost Python
equivalent in _da_python_binding, followed by a re-unification at the interface level.

The middle layer is limited and cannot easily use inheritance. It has to explicitly include a
binding from each of the accessor classes’ methods to every C++ counterpart. The resulting
source code of the _da_python_bindings.so has a lot of repetition. There are more than 870
binding commands for the accessor class alone, which only differ by calling different user type

1. Some bug reports suggest [Stab], that the reason might be connected to the Boost library. It is difficult to verify
this, as the library has very limited documentation on its NumPy integration. A future version of Boost might
solve this issue.

2. In Python, the underscore at the beginning of a name hints at an internal variable; or in this case a library.
3. 15 user types multiplied by three dimensional accessors, plus one void accessor class.
4. Some methods and classes that were not discussed in this thesis are included for the sake of completion.
5. The non-void accessors also inherit from NumPy’s ndarray.
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Feature Legacy Bindings New Bindings

Device Functions:
open X* X
close � X
getOneDAccessor X* X
getTwoDAccessor X* X
getScalarAccessor � X
getVoidAccessor � X
activateAsyncRead � X

Accessor Functions:
read X X
readLatest � X
readNonBlocking � X
read_raw X � *
write X X
writeDestructively � X
write_raw X � *
getName � X
getUnit � X
getValueType � X
getDescription � X
getVersionNumber � X
isReadOnly � X
isReadable � X
isWriteable � X
isInitialised � X
setDataValidity � X
dataValidity � X
getId � X

Other Classes:
AccessMode � X
VersionNumber � X**
TransferElementID � X**
DataValidity � X**

X* Indirect implementation, workflow differs from current C++

version.
X** Working, but some seldom used class methods not yet

covered.
� * Deprecated in current DeviceAccess version.

Table 5.1: Feature Coverage Comparison
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Figure 5.1: Partition of the Accessor Class Relationship Diagram

implementations. To avoid errors and to facilitate maintenance, each base method should only
be stated once and then be automatically filled into its respective place and form.

The new middle layer is distributed as a compiled object file. This offers a solution for the
automated population of classes via nested preprocessor macros. Before the actual compilation,
these macros are extended as textual substitutions. Each macro argument in the text is replaced
by its text counterpart. Macros tend to produce unintended results and have to be used with great
caution. Many development environments have difficulties checking for correct syntax in the
resulting code, as it might differ from the actual outcome of the preprocessor. This is especially
true for nested macros and the combination with templates. This area of meta-programming is
also supported by the Boost library. Additional work in this direction might optimize the current
implementation even further.
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Legacy Support

As many automation scripts have already been written with the existing bindings, it is important
to keep the so-called mtca4u library in the package. As the middle layer has been reworked
during this thesis, some of the implementations had to be adjusted6.

To ensure that the library works as intended, there are already some tests in place that cover the
basic functions. These tests are now even more important. It is critical, that the legacy bindings
keep the same behavior while being adapted to fit the improved middle layer.

Due to the way these tests have been developed with the library, some of the tests were targeting
the final bindings and some were about the middle layer functionality. To keep the tests on the
same hierarchy level, the latter procedures were moved to target the interface that is exposed to
the user instead.

6. The previous package came with a middle layer in the form of a compiled shared object file called
mtca4udeviceaccess.so, which has been replaced by the new _da_python_bindings.so.
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6 Documentation Generation

Through the development of the core source code, the maintainers also try to streamline the
build, delivery, testing, and documentation. These different steps are selectable results of one
common configuration script.

The CMake configuration allows for the generation of a complete HTML documentation with a
call of make doc. The Script is configured to run Sphinx, which will then proceed to generate
the necessary files for a documentation in form of a website [SPH].

A philosophy to ease this work step is "docs as code" [Wri]. The key principle is that the
documentation is written in the same space as the connected code. This has the advantage of
using the same tools for both workflows and the early inclusion of developers to comment on
their code. It is even possible to load the included documentation examples from files. These files
can then be checked for correctness each time the documentation is generated. Currently, testing
is an extra step in the pipeline and is not linked with the HTML file generation. Consequently, it
is not guaranteed that every example in the documentation is representing functioning code.

Many development environments support docstrings. These are strings that will give additional
information to the coder when using the corresponding functions or objects. It is possible to
show this information with the Python help command, but also as popups while typing, as
shown in Figure 6.1.

Figure 6.1: Example of Popup Text from Python Docstring

Most IDEs support reStructuredText1, which is also parsed by Spinx. It can be used to inform
about function descriptions and parameters, their expected types, usage examples, hints, warn-
ings, and many other entries. The beginning of the docstring, that belongs to the function in
Figure 6.1 is listed in Listing 6.1. The IDE output is already very easy to use, but the main
advantage of the automated formatting is best visible in the separate documentation websites
(see Figure A.1).

1. Markup Syntax and Parser Component of Docutils (https://docutils.sourceforge.io/rst.html)
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1 """Get a :py:class:‘OneDRegisterAccessor‘ object for the given
register.

2 The OneDRegisterAccessor allows to read and write registers
transparently by using

3 the accessor object like a vector of the type UserType. If needed, the
conversion

4 to and from the UserType will be handled by a data converter matching
the

5 register description e.g. a map file.
6 Parameters
7 ----------
8 userType : type or numpy.dtype
9 The userType for the accessor. Can be float, or any of the

numpy.dtype
10 combinations of signed, unsigned, double, int, 8, 16, 32 or 64-bit.

E.g.
11 ‘numpy.uint8‘, or ‘numpy.float32‘.
12 registerPathName : str
13 The name of the register to read from."""

Listing 6.1: Python Docstring with reStructuredText

Another addition to the source code is the implementation of type hinting and function anno-
tations2. An actual annotated function signature example with return type and defaults can be
seen in the top half of Figure A.1. A variable can be annotated with a semicolon followed by
its expected type. Although Python is a dynamically typed language, it can be helpful to have
more information about methods, their parameters, and their return type. The difference between
an annotated function and its standard counterpart is best seen during use. As long as the IDE
does not have any information about the variable’s type, it can not make any suggestions. This
includes code completion or type-checking for overloaded and generic functions. An example
of the respective IDE code completion can be seen in Figure 6.2.

Figure 6.2: IDE Code Completion with and without Annotations

2. As proposed in PEP 3107: https://peps.python.org/pep-3107/

20

https://peps.python.org/pep-3107/


7 Usage and Comparison

The features of the bindings are shown by an example, that is repeated for the legacy bindings, the
current binding iteration, and the C++ counterpart. The scenario task consists of a programmable
toaster. It has a selection wheel, where the user can select their desired toasting grade, a
corresponding toasting grade detection sensor, and an internal trigger to eject the toast. It also
features a sensor bank to measure the toast’s thickness and an accordingly sized heating array to
precisely warm even very unevenly cut bread to perfection. The adjustment for the best toasting
results can be done with two variables: the base heat and the scale-up to accommodate different
thicknesses.

Legacy Interface

The legacy bindings offer read and write functions through the device object by stating the
register path. The write function also expects a fitting array for writing the data. Reads will
always return with a float64 data type. Scalars can be emulated as single-entry arrays. Explicit
opening or closing of the connection is not possible. It is handled internally and during garbage
collection. The example is given in Listing 7.1.
1 import mtca4u
2 import numpy as np
3
4 # Define heating parameters:
5 base_heat, thickness_scale = 200, 10
6
7 # Open the configuration file for the household:
8 mtca4u.set_dmap_location("household.dmap")
9
10 # Assign the toaster device from the alias found in the dmap file
11 toaster = mtca4u.Device("toaster")
12
13 # Read the data from the thickness_scanner, which has 4 elements:
14 thickness_sensors = toaster.read(registerPath="THICKNESS_SENSORS")
15
16 # The toaster also has a heating array, with 4 individual heating

units to evenly heat the toast. The user has to get the size
information externally to create the correct array, which is then
used for the write function:

17 heat_settings = np.array([0, 0, 0, 0])
18
19 # Set and write heating settings according to thickness:
20 for pos, thickness in enumerate(thickness_sensors):
21 heat_settings[pos] = base_heat + thickness_scale * thickness
22 toaster.write(dataToWrite=heat_settings, registerPath="HEATING_ARRAY")
23
24 # Check how dark the toast has become and compare to user selection

wheel setting, both scalar values, but the legacy has only arrays
available:
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25 selection = toaster.read(registerPath="SELECTION_WHEEL")[0]
26 toasting_grade = toaster.read(registerPath="TOASTING_SENSOR")[0]
27 while toasting_grade <= selection:
28 toasting_grade = toaster.read(registerPath="TOASTING_SENSOR")[0]
29
30 # The toast is ready. Eject the toast with a write command to the

ejector. The ejector register is a void register, writing data is
okay, but the data will be discarded.

31 toaster.write(dataToWrite=1, registerPath="EJECTOR")

Listing 7.1: Legacy Bindings Workflow Demonstration

The legacy interface was built with a two-level alias hierarchy, which consists of a module name
and a register name. This system has since been replaced by a register path, that can have an
arbitrary number of logical levels. The read and write functions are written to accept parameters
in the order of module name, register name, and data, which eliminates the need to explicitly
name the parameters when a register path is not used. As the module-register convention has
been deprecated, it is not used in the current bindings. Register paths are used in all examples to
keep them coherent.

New Bindings

For this simple scenario, the main difference between legacy and new bindings is the inclusion
of accessor objects. The creation and handling of additional arrays can be skipped and the data
stays with the correct register.
1 import deviceaccess as da
2 import numpy as np
3
4 # Define heating parameters:
5 base_heat, thickness_scale = 200, 10
6
7 # Open the configuration file for the household:
8 da.setDMapFilePath("deviceInformation/household.dmap")
9
10 # Assign the toaster device from the alias found in the dmap file and

open it:
11 toaster = da.Device("toaster")
12 toaster.open()
13
14 # Get accessors for the sensors and triggers, with user data types:
15 heat_settings = toaster.getOneDRegisterAccessor(np.uint16,

"HEATING_ARRAY")
16 thickness_sensors = toaster.getOneDRegisterAccessor(np.uint8,

"THICKNESS_SENSORS")
17 selection = toaster.getScalarRegisterAccessor(np.uint8,

"SELECTION_WHEEL")
18 toasting_grade = toaster.getScalarRegisterAccessor(np.uint8,

"TOASTING_SENSOR")
19 ejectTrigger = toaster.getVoidRegisterAccessor("EJECTOR")
20
21 # Read the data from the thickness_scanner:
22 thickness_sensors.read()
23
24 # Set heating according to thickness:
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25 for pos, thickness in enumerate(thickness_sensors):
26 heat_settings[pos] = base_heat + thickness_scale * thickness
27
28
29 # Write the settings:
30 heat_settings.write()
31
32 # Check how dark the toast has become and compare to user selection

wheel setting:
33 selection.read()
34 toasting_grade.read()
35 while toasting_grade <= selection:
36 toasting_grade.read()
37
38 # The toast is ready. Eject the toast with a write command to the

ejector.
39 ejectTrigger.write()
40
41 # Closing the connection
42 toaster.close()

Listing 7.2: New Bindings Workflow Demonstration

C++ Workflow

A third example is given in Listing 7.3 to show the original C++ workflow. Apart from the
obvious differences between the two languages in their respective syntax, the two versions
follow the same principles and use the same method names. A small, but unavoidable detail is
the setting of the user data type. While it comes as a template parameter in C++ (See line 17:
toaster.getOneDRegisterAccessor<uint16_t>(...), the Python version in line 15 takes
the user data type as a first argument: dev.getOneDRegisterAccessor(np.uint16,.... This
stems from the approach that is used to translate the C++ template mechanism into Python
objects. More details on the implementation are given in section 5.2.
1 #include <ChimeraTK/Device.h>
2
3 int main() {
4
5 // Define heating parameters:
6 int base_heat = 200;
7 int thickness_scale = 10;
8
9 // Open the configuration file for the household:
10 ChimeraTK::setDMapFilePath("deviceInformation/household.dmap");
11 // Assign the toaster device from the alias found in the dmap file

and open
12 // it:
13 ChimeraTK::Device toaster("toaster");
14 toaster.open();
15
16 // Get accessors for the sensors and triggers, with user data

types:
17 ChimeraTK::OneDRegisterAccessor<uint16_t> heat_settings =
18 toaster.getOneDRegisterAccessor<uint16_t>("HEATING_ARRAY");
19 ChimeraTK::OneDRegisterAccessor<uint8_t> thickness_sensors =
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20 toaster.getOneDRegisterAccessor<uint8_t>("THICKNESS_SENSORS");
21 ChimeraTK::ScalarRegisterAccessor<uint8_t> selection =
22 toaster.getScalarRegisterAccessor<uint8_t>("SELECTION_WHEEL");
23 ChimeraTK::ScalarRegisterAccessor<uint8_t> toasting_grade =
24 toaster.getScalarRegisterAccessor<uint8_t>("TOASTING_SENSOR");
25 ChimeraTK::VoidRegisterAccessor ejectTrigger =
26 toaster.getVoidRegisterAccessor("EJECTOR", {});
27
28 // Read the data from the thickness_scanner:
29 thickness_sensors.read();
30
31 // Set heating according to thickness:
32 for (std::size_t pos = 0; pos < heat_settings.getNElements();

++pos) {
33 heat_settings[pos] = base_heat + thickness_scale *

thickness_sensors[pos];
34 }
35
36 // Write the settings:
37 heat_settings.write();
38
39 // Check how dark the toast has become and compare to user

selection wheel
40 // setting:
41 selection.read();
42 toasting_grade.read();
43
44 while (toasting_grade <= selection) {
45 toasting_grade.read();
46 }
47
48 // The toast is ready. Eject the toast with a write command to the

ejector.
49 ejectTrigger.write();
50
51 // Closing the connection:
52 toaster.close();
53 return 0;
54 }

Listing 7.3: C++ Workflow Demonstration

Convenience Functions

The new bindings come very close to the original source code, but they leave some of the
convenience of the legacy bindings behind. It needs to be discussed, if some advantages of
garbage collection should be used, to reduce some of the necessary code for leaner scripts. The
closing of devices could be added to the finalization of the object. The connection is then closed
when the respective object is no longer accessible. Likewise, the open method could be included
in the initialization of the Device object. The implicit handling of the connections should be
handled carefully. Errors in the connection process could be obscured and hinder tracing the
underlying problem.
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Another addition to the bindings could be the one-time write and read functions of the legacy
bindings. They would work directly on the device object, while the accessors are requested and
discarded in the background.

Push Types

The examples from the previous code snippets have so far covered a scenario where the host
of the Python code initializes the data transfer. The main reason to rework the bindings was
the inclusion of the other direction: when the data is pushed from the device to the host. This
includes hardware interrupts and publish-subscribe protocols.

Listing 7.4 shows the setup in use. It features the same toaster example as above, but now makes
use of the THICKNESS_SENSORS as a trigger. The script will only proceed, when a slice of bread
is in place, e.g. one of the elements in the array is bigger than 0.

It is important to prepare the device and the accessor before the push type mechanism can
take effect. This is done via the activateAsyncRead method from the device object, which
is called after the device is opened. The second step is the passing of the wait_for_new_data

AccessMode flag in the request for an accessor. The updated parts for the use of the accessor
can be seen in Listing 7.4. The new code will ensure that the toaster device’s thickness sensor
is not permanently queried for the same information. New data is only pushed when an actual
reading has happened.
1 # Assume the device ’toaster’ has been opened previously and was

prepared via "toaster.activateAsyncRead()"
2 # The accessMode is set as followed:
3 thickness_sensors = toaster.getOneDRegisterAccessor(np.uint8,

"THICKNESS_SENSORS",
accessModeFlags=[da.AccessMode.wait_for_new_data])

4
5 # First read is always non-blocking:
6 thickness_sensors.read()
7 while thickness_sensors.min() < 1:
8 thickness_sensors.read() # will now block until new data has been

received
9
10 # Afterwards the script can return as before to set the heating.

Listing 7.4: Example of a Push Type Interaction
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8 Conclusion and Outlook

The purpose of this thesis was the development, reasoning, and documentation of the extension
of the Python bindings for the ChimeraTK DeviceAccess library. The status quo had working
bindings for basic scripts. After several updates of the C++ libraries, the bindings were missing
crucial functions like push-types for trigger usage. The necessary extension was a welcome
invitation for a general rework. During this work, the outdated NumPy integration was reworked
and the coverage of the bindings was increased. They include most functions that are offered by
the original C++ library. A refactoring of the codebase for future projects was done in parallel.

Apart from this document the thesis also consists of the source code, which will now continue
to be part of the ChimeraTK toolkit. Every class and method has complete documentation and
every complex item has usage examples. Type hints and docstrings are consequently integrated
into the code and improve the workflow with compatible IDEs.

The user type introduction needed fundamental rework on the middle layer of the library, as
each of the non-void accessors can now support all of the numerical types from the underlying
C++ libraries (see Table 3.1). The same principles were used to offer all the device functions.
Increasing the readability and maintainability of the source code was a key aspect of the rework.
Backward compatibility is still given through the legacy bindings, which are included in the
package. They have been reworked to fit the new middle layer. A complete overview of the
added functionality can be seen in Table 5.1.

The C++ accessors allow for the user types of bool and string. While the first one can be
converted in the Python environment via NumPy, the string class cannot currently be used. The
middle layer has been prepared, so missing user types can be implemented with some additions
to the interface library.

Also, some of the advanced features of the accessors handle additional classes like the VersionNumber.
These classes were included with their basic functionality only.

Another aspect for future updates is the inclusion of the documentation examples in the test
cases. This would ensure that the documentation is always correct and up to date.
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Appendices

27



A Online Documentation

The complete documentation is available on Github.io1 and on the included DVD of the physical
copy of this thesis. An example of the generated website is shown in Figure A.1. The entry
shows the documentation of the getScalarRegisterAccessor method of the device class.

Figure A.1: Example of a Method Description from the Documentation

The example shows an explanation of the method and its parameters and gives an example via
Python code. Every entry also offers a link to the source code to inspect the actual implementation.
Some entries might also have hints or warnings on their usage or references to derived or
otherwise important classes.

The code for the documentation websites is directly generated from the source code of the
library, as described in chapter 6.

1. https://chimeratk.github.io/DeviceAccess-PythonBindings/03.00/index.html
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B Source Code

The source code of the software developed as part of this thesis can be found here:

• ChimeraTK DeviceAccess-PythonBindings GitHub repository, version tag 3.00.001,

• On the DVD included in the physical copy of this document.

1. https://github.com/ChimeraTK/DeviceAccess-PythonBindings/tree/03.00.00
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C Licenses

The source code is licensed under the GPL-3.0 license [GNU]:

Permissions of this copyleft license are conditioned on making available complete
source code of licensed works and modifications under the same license or the GNU
GPLv3. Copyright and license notices must be preserved. Contributors provide
an express grant of patent rights. However, a larger work using the licensed work
through interfaces provided by the licensed work may be distributed under different
terms and without source code for the larger work. [...]

A copy of the complete license is distributed alongside the bindings source code.

The text of this thesis and its figures are licensed under the Creative Commons Attribution 4.0
International (CC BY 4.0) license.
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