Comparison of Feedback Controller for Link Stabilizing Units of the Laser Based Synchronization System used at the European XFEL

M. Heuer¹ G. Lichtenberg² S. Pfeiffer¹ H. Schlarb¹

¹Deutsches Elektronen Synchrotron Hamburg, Germany ²Hamburg University of Applied Sciences, Germany

MOC₇B3

International Beam Instrumentation Conference 2014/09/15

Hochschule für Angewandte Wissenschaften Hamburg **Hambura University of Applied Sciences**

Contents

[Introduction](#page-2-0)

- [Link Stabilizing Unit](#page-19-0)
- [Introduction to Control](#page-24-0)
- [Implementation and Experimental Results](#page-53-0)
- [Conclusion and Outlook](#page-66-0)

Contents

1 [Introduction](#page-2-0)

-
-
-
-

European X-ray Free Electron Laser (XFEL)

Idea

 \triangleright Build a Camera to capture ultrafast processes in an atomic scale E.g.: Make a movie of the folding process of biomolecules

Some Numbers

 \triangleright Wavelength of 0.05 to 6 nm, Pulse duration of less than 100 fs (10⁻¹⁵) Total facility length of 3.4 km with 101 accelerator modules

Courtesy of http://www.xfel.eu M. Heuer et al. | 2014/08/28 | Page 4/30

 $\overline{}$ $\overline{}$

 \triangleright The relative jitter between all link ends should be less as possible

Requirements

 \triangleright The relative jitter between all link ends should be less as possible

Current State

 \blacktriangleright Heuristically tuned PI controller

Requirements

 \triangleright The relative jitter between all link ends should be less as possible

Current State

 \blacktriangleright Heuristically tuned PI controller

New Approach

Model based control

Requirements

 \triangleright The relative jitter between all link ends should be less as possible

Current State

 \blacktriangleright Heuristically tuned PI controller

New Approach

Model based control 1. Model the dynamics of the system

Requirements

 \triangleright The relative jitter between all link ends should be less as possible

Current State

 \blacktriangleright Heuristically tuned PI controller

New Approach

Model based control

- 1. Model the dynamics of the system
- 2. Synthesis a suitable controller with this model

Requirements

 \triangleright The relative jitter between all link ends should be less as possible

Current State

 \blacktriangleright Heuristically tuned PI controller

New Approach

Model based control

- 1. Model the dynamics of the system
- 2. Synthesis a suitable controller with this model
- 3. Verify the controller performance in an experiment

Problem Statement

Problem Statement

 \blacktriangleright How to synthesis a model based controller? \blacktriangleright Has a model based controller a better performance?

Contents

- 2 [Link Stabilizing Unit](#page-19-0)
-
-
-

Contents

- 2 [Link Stabilizing Unit](#page-19-0)
- 3 [Introduction to Control](#page-24-0)
-
-

 \blacktriangleright $u(t)$ output voltage applied to the piezo amplifier

 \blacktriangleright $u(t)$ output voltage applied to the piezo amplifier \blacktriangleright $y(t)$ the real timing difference

 \blacktriangleright $u(t)$ output voltage applied to the piezo amplifier \blacktriangleright $y(t)$ the real timing difference $y_m(t) = y(t) + n(t)$ timing difference measured by the OXC

 \blacktriangleright $u(t)$ output voltage applied to the piezo amplifier \blacktriangleright $y(t)$ the real timing difference $y_m(t) = y(t) + n(t)$ timing difference measured by the OXC \blacktriangleright $n(t)$ noise of the balanced detector

- \blacktriangleright $u(t)$ output voltage applied to the piezo amplifier
- \blacktriangleright $y(t)$ the real timing difference
- $y_m(t) = y(t) + n(t)$ timing difference measured by the OXC
- \blacktriangleright $n(t)$ noise of the balanced detector
- $\blacktriangleright d_i(t)$ input disturbances, e.g. ripple of the piezo amplifier supply

- \blacktriangleright $u(t)$ output voltage applied to the piezo amplifier
- \blacktriangleright $y(t)$ the real timing difference

$$
y_m(t) = y(t) + n(t)
$$
 timing difference measured by the OXC

- \blacktriangleright $n(t)$ noise of the balanced detector
- $\blacktriangleright d_i(t)$ input disturbances, e.g. ripple of the piezo amplifier supply
- $\blacktriangleright d_o(t)$ output disturbances, e.g. vibrations of the setup

 $T(s) = \frac{P(s)C(s)}{1+P(s)C(s)}$

$$
T(s) = \frac{P(s)C(s)}{1+P(s)C(s)}
$$

high bandwidth controller

I Tracking of a reference $T(s) \rightarrow 1$

General Control Loop

 $T(s) = \frac{P(s)C(s)}{1+P(s)C(s)}$

$$
S(s) = 1 - T(s) = \frac{1}{1 + P(s)C(s)}
$$

high bandwidth controller

I Tracking of a reference $T(s) \rightarrow 1$

General Control Loop

 $T(s) = \frac{P(s)C(s)}{1+P(s)C(s)}$

$$
S(s) = 1 - T(s) = \frac{1}{1 + P(s)C(s)}
$$

high bandwidth controller

I Tracking of a reference $T(s) \rightarrow 1$ ▶ Output Disturbance rejection $S(s) \to 0 \Rightarrow T(s) \to 1$

$$
T(s) = \frac{P(s)C(s)}{1+P(s)C(s)}
$$

high bandwidth controller

I Tracking of a reference $T(s) \rightarrow 1$ Output Disturbance rejection $S(s) \to 0 \Rightarrow T(s) \to 1$

$$
S(s) = 1 - T(s) = \frac{1}{1 + P(s)C(s)}
$$

high bandwidth controller

System output due to noisy measurements $T(s) \to 0$

$$
T(s) = \frac{P(s)C(s)}{1+P(s)C(s)}
$$

high bandwidth controller

Tracking of a reference $T(s) \rightarrow 1$ Output Disturbance rejection $S(s) \to 0 \Rightarrow T(s) \to 1$

$$
S(s) = 1 - T(s) = \frac{1}{1 + P(s)C(s)}
$$

high bandwidth controller

- System output due to noisy measurements $T(s) \rightarrow 0$
- Very large controller outputs $u(t)$

 $\label{eq:ode} \dot{x}(t) =\!\boldsymbol{A} \boldsymbol{x}(t) + \boldsymbol{B} \boldsymbol{u}(t) \,,$ $y(t) = Cx(t) + Du(t),$

$$
\dot{x}(t) = Ax(t) + Bu(t),
$$

$$
y(t) = Cx(t) + Du(t),
$$

 \triangleright $x(t)$ states of the system (energy storages) \blacktriangleright $u(t)$ input to the system \blacktriangleright $y(t)$ output of the system

based on Skogestad and Postlethwaite (2005) M. Heuer et al. | 2014/08/28 | Page 13/30

 $\dot{x}(t) = Ax(t) + Bu(t),$ $y(t) = Cx(t) + Du(t)$,

- \triangleright $x(t)$ states of the system (energy storages)
- \blacktriangleright $u(t)$ input to the system
- \blacktriangleright y(t) output of the system
- \blacktriangleright A describes the dynamic behavior of the system
- \triangleright B describes how the input acts on the state
- \triangleright C describes how the state are combined to the output
- \triangleright D describes which inputs have a direct influence on the output

Model Identification

$$
\begin{tabular}{c} Identification Signal \\ e.g. White Noise, Step, ... \\ \end{tabular} \begin{tabular}{c} \begin{tabular}{c} System \\ \end{tabular} \\ \end{tabular} \end{tabular} \begin{tabular}{c} \begin{tabular}{c} \multicolumn{3}{c}{{\bf System} \end{tabular} \\ \end{tabular} \end{tabular} \begin{tabular}{c} \begin{tabular}{c} \multicolumn{3}{c}{{\bf Maximum} \end{tabular} \\ \end{tabular}
$$

 \blacktriangleright $P(s) = \frac{\text{Measurement}}{\text{Identification Signal}}$ \triangleright Matlab System Identification Toolbox

$$
\dot{x}(t) = Ax(t) + Bu(t),
$$

$$
y(t) = Cx(t) + Du(t),
$$

$$
\dot{x}(t) = Ax(t) + Bu(t),
$$

$$
y(t) = Cx(t) + Du(t),
$$

$$
u(t) = -Fx(t)\,,
$$

$$
\begin{aligned}\n\dot{x}(t) &= Ax(t) + Bu(t)\,, \\
y(t) &= Cx(t) + Du(t)\,,\n\end{aligned}
$$

$$
u(t)=-Fx(t)\,,
$$

$$
\min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) \, dt \,,
$$

šΥ

based on Zhou et al. (1996) M. Heuer et al. | 2014/08/28 | Page 15/30

$$
\dot{x}(t) = Ax(t) + Bu(t),
$$

$$
y(t) = Cx(t) + Du(t),
$$

$$
u(t)=-Fx(t)\,,
$$

$$
\min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) \, dt \, ,
$$

 $\blacktriangleright\ Q$ and R are tuning parameter. e.g. $Q=C^T\cdot C$ and tune the response speed with R

based on Zhou et al. (1996) M. Heuer et al. | 2014/08/28 | Page 15/30

$$
\dot{x}(t) = Ax(t) + Bu(t),
$$

$$
y(t) = Cx(t) + Du(t),
$$

$$
u(t)=-Fx(t)\,,
$$

$$
\min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) \, dt \, ,
$$

 $\blacktriangleright\ Q$ and R are tuning parameter. e.g. $Q=C^T\cdot C$ and tune the response speed with R \blacktriangleright F = $-\text{lgr}(A, B, C^* * C, R)$;

$$
\dot{x}(t) = Ax(t) + Bu(t),
$$

$$
y(t) = Cx(t) + Du(t),
$$

$$
u(t)=-Fx(t)\,,
$$

$$
\min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) \, dt \, ,
$$

 $\blacktriangleright\ Q$ and R are tuning parameter. e.g. $Q=C^T\cdot C$ and tune the response speed with R

$$
\blacktriangleright F = -\text{lqr}(A, B, C^* * C, R);
$$

 \blacktriangleright $x(t)$ is not measured in most cases.

based on Zhou et al. (1996) M. Heuer et al. | 2014/08/28 | Page 16/30

based on Zhou et al. (1996) M. Heuer et al. | 2014/08/28 | Page 16/30

 \blacktriangleright The dual problem to state feedback

 \blacktriangleright The dual problem to state feedback $\blacktriangleright Q_{obsv}$ and R_{obsv} are again tuning parameter. e.g. $Q_{obsv} = B \cdot B^T$ and tune the filtering of the noise with R_{obsv}

 \blacktriangleright The dual problem to state feedback $\blacktriangleright Q_{obsv}$ and R_{obsv} are again tuning parameter. e.g. $Q_{obsv} = B \cdot B^T$ and tune the filtering of the noise with R_{obsv} \blacktriangleright L = $-Iar(A', C', B*B', Robsv)$;

$$
\mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}
$$

Contents

-
-
- 4 [Implementation and Experimental Results](#page-53-0)
-

M. Heuer et al. | 2014/08/28 | Page 17/30

Matlab VHDL Toolbox

Extends the Xilinx System Generator Toolbox

- Automatic code generation from a Simulink model (no VHDL knowledge required)
- \triangleright Simulation of the real behavior (saturation, overflow, fixed point precision, etc.)

Model Identification

M. Heuer et al. | 2014/08/28 | Page 19/30

Model Identification

The model fits well to the dynamic behavior of the real plant.

M. Heuer et al. | 2014/08/28 | Page 19/30

Identification

$$
A = \begin{bmatrix} -253.8 & 1.133 \cdot 10^5 & 935.9 \\ -1.133 \cdot 10^5 & -1138 & -2017 \\ 935.9 & -4035 & -1.346 \cdot 10^5 \end{bmatrix},
$$

$$
B = \begin{bmatrix} 112.9 & 237.9 & -209.5 \\ 225.8 & -475.9 & -418.9 \end{bmatrix},
$$

M. Heuer et al. | 2014/08/28 | Page 20/30

Effect of State Feedback

M. Heuer et al. | 2014/08/28 | Page 21/30

Effect of State Feedback

Its possible to change the dynamic behavior e.g. increase the damping.

M. Heuer et al. | 2014/08/28 | Page 21/30

Control Startup

M. Heuer et al. | 2014/08/28 | Page 22/30

Control Startup

The model based controller reaches the steady state faster ...

M. Heuer et al. | 2014/08/28 | Page 22/30

Dynamic behavior of an input disturbances

M. Heuer et al. | 2014/08/28 | Page 23/30

Dynamic behavior of an input disturbances

... and rejects disturbances much better than the PID controller.

M. Heuer et al. | 2014/08/28 | Page 23/30

Dynamic behavior of a coarse tuning step

Dynamic behavior of a coarse tuning step

Effects measurable with PID controller but not with LQG.

M. Heuer et al. | 2014/08/28 | Page 24/30

Contents

-
-
-
- **5** [Conclusion and Outlook](#page-66-0)

M. Heuer et al. | 2014/08/28 | Page 25/30

Statements

M. Heuer et al. | 2014/08/28 | Page 26/30

Statements

\triangleright Use model based control approaches to a better performance

Statements

- \triangleright Use model based control approaches to a better performance
- \triangleright It is possible to achieve good control results for the LSU with a LQG controller

Conclusion

Conclusion

M. Heuer et al. | 2014/08/28 | Page 27/30

Conclusion

Conclusion

An overview of the LbSynch System was given

Conclusion

An overview of the LbSynch System was given

 \triangleright It was shown how to synthesis a LQG controller

Conclusion

- An overview of the LbSynch System was given
- \triangleright It was shown how to synthesis a LQG controller
- \triangleright The design controller was tested in an experimental setup

Conclusion

- An overview of the LbSynch System was given
- \triangleright It was shown how to synthesis a LQG controller
- \triangleright The design controller was tested in an experimental setup

Outlook

Conclusion

- \triangleright An overview of the LbSynch System was given
- \triangleright It was shown how to synthesis a LQG controller
- \triangleright The design controller was tested in an experimental setup

Outlook

 \blacktriangleright Test other model based controller types

Conclusion

- \triangleright An overview of the LbSynch System was given
- It was shown how to synthesis a LQG controller
- The design controller was tested in an experimental setup

Outlook

- **In Test other model based controller types**
- Include new MicroTCA boards and the final configuration

The End

Thank you very much for your attention

M. Heuer et al. | 2014/08/28 | Page 28/30

Further Reading

- L. Ljung. System identification: theory for the user. Prentice-Hall information and system sciences series. Prentice-Hall, 1987. ISBN 9780138816407. URL <http://books.google.com/books?id=gpVRAAAAMAAJ>.
- S. Skogestad and I. Postlethwaite. Multivariable Feedback Control Analysis and Design. John Wiley & Sons, Ltd, 2nd edition, 2005. ISBN 978-0-470-01168-3.
- K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Feher/Prentice Hall Digital and. Prentice Hall, 1996. ISBN 9780134565675. URL <http://books.google.com/books?id=RPSOQgAACAAJ>.

LQR via algebraic riccati equation

$$
\dot{x}(t) = Ax(t) + Bu(t),
$$

\n
$$
y(t) = Cx(t) + Du(t),
$$

\n
$$
u(t) = -Fx(t),
$$

\n
$$
\min V = \int_0^\infty x(t)^T Qx(t) + u(t)^T R u(t) dt,
$$

\n
$$
F = R^{-1}B^T P
$$

\n
$$
A^T P + P A - P B R^{-1} B^T P + Q = 0
$$

