Comparison of Feedback Controller for Link Stabilizing Units of the Laser Based Synchronization System used at the European XFEL

M. Heuer¹ G. Lichtenberg² S. Pfeiffer¹ H. Schlarb¹

¹Deutsches Elektronen Synchrotron Hamburg, Germany ²Hamburg University of Applied Sciences, Germany

MOCZB3

International Beam Instrumentation Conference 2014/09/15

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

	LSU		

Contents

1 Introduction

- 2 Link Stabilizing Unit
- 3 Introduction to Control
- 4 Implementation and Experimental Results
- 5 Conclusion and Outlook

Introduction	LSU		

Contents

1 Introduction

- 2 Link Stabilizing Unit
- 3 Introduction to Control
- 4 Implementation and Experimental Results
- 5 Conclusion and Outlook

Introduction	LSU	Control		Conclusion
0000				
-	/	-1		
European X	-rav Free I	-lectron Laser	$(X \vdash \vdash I)$	

Idea

Build a Camera to capture ultrafast processes in an atomic scale
 E.g.: Make a movie of the folding process of biomolecules

Some Numbers

Wavelength of 0.05 to 6 nm, Pulse duration of less than 100 fs (10⁻¹⁵)
 Total facility length of 3.4 km with 101 accelerator modules

Courtesy of http://www.xfel.eu

Introduction	LSU		
0000			

Introduction	LSU O	Experiments 0000000	

Introduction	LSU		
0000			

Introduction	LSU	Experiments	
0000			

Introduction	LSU	Experiments	
0000			

Introduction	LSU	Experiments	
0000			

Introduction	LSU		Experiments	
0000				
Laser Rase	d Synchron	ization System	(LbSynch)	

Requirements

► The relative jitter between all link ends should be less as possible

Introduction	LSU	Experiments	
0000			

Requirements

► The relative jitter between all link ends should be less as possible

Current State

Heuristically tuned PI controller

Introduction	LSU	Experiments	
0000			

Requirements

► The relative jitter between all link ends should be less as possible

Current State

Heuristically tuned PI controller

New Approach

Model based control

Introduction	LSU	Experiments	
0000			

Requirements

The relative jitter between all link ends should be less as possible

Current State

Heuristically tuned PI controller

New Approach

Model based control

1. Model the dynamics of the system

Introduction	LSU	Experiments	
0000			

Requirements

The relative jitter between all link ends should be less as possible

Current State

Heuristically tuned PI controller

New Approach

Model based control

- 1. Model the dynamics of the system
- 2. Synthesis a suitable controller with this model

Introduction	LSU	Experiments	
0000			

Requirements

The relative jitter between all link ends should be less as possible

Current State

Heuristically tuned PI controller

New Approach

Model based control

- 1. Model the dynamics of the system
- 2. Synthesis a suitable controller with this model
- 3. Verify the controller performance in an experiment

Introduction	LSU		
0000			

Problem Statement

Introduction	LSU	Experiments	
0000			

Problem Statement

How to synthesis a model based controller?
Has a model based controller a better performance?

LSU		

Contents

1 Introduction

- 2 Link Stabilizing Unit
- 3 Introduction to Control
- 4 Implementation and Experimental Results
- 5 Conclusion and Outlook

	LSU	Experiments	
	•		

LSU	Experiments	
•		

LSU	Experiments	
•		

LSU	Experiments	
•		

LSU	Control	

Contents

1 Introduction

- 2 Link Stabilizing Unit
- 3 Introduction to Control
- 4 Implementation and Experimental Results
- 5 Conclusion and Outlook

	LSU O	Control ●00000	Experiments 0000000	
Concerl Control				

 \blacktriangleright u(t) output voltage applied to the piezo amplifier

	LSU O	Control ●00000	Experiments 0000000	
Concerl Control				

u(t) output voltage applied to the piezo amplifier
 y(t) the real timing difference

	LSU ○	Control ●00000	Experiments 0000000	
Control Control	llees			

u(*t*) output voltage applied to the piezo amplifier
 y(*t*) the real timing difference
 y_m(*t*) = *y*(*t*) + *n*(*t*) timing difference measured by the OXC

LSU ○	Control ●00000	Experiments 0000000	

u(*t*) output voltage applied to the piezo amplifier
 y(*t*) the real timing difference
 y_m(*t*) = *y*(*t*) + *n*(*t*) timing difference measured by the OXC
 n(*t*) noise of the balanced detector

LSU ○	Control ●00000	Experiments 0000000	

u(t) output voltage applied to the piezo amplifier
 y(t) the real timing difference
 y_m(t) = y(t) + n(t) timing difference measured by the OXC
 n(t) noise of the balanced detector
 d_i(t) input disturbances, e.g. ripple of the piezo amplifier supply

LSU ○	Control ●00000	Experiments 0000000	

- \blacktriangleright u(t) output voltage applied to the piezo amplifier
- \blacktriangleright y(t) the real timing difference

▶
$$y_m(t) = y(t) + n(t)$$
 timing difference measured by the OXC

- \blacktriangleright n(t) noise of the balanced detector
- \blacktriangleright $d_i(t)$ input disturbances, e.g. ripple of the piezo amplifier supply
- > $d_o(t)$ output disturbances, e.g. vibrations of the setup

	LSU	Control	Experiments	
0000		00000	0000000	00
General Contr	ol Loop			

LSU ○	Control 0●0000	Experiments 0000000	

 $T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$

	LSU ○	Control 00000	Experiments 0000000	
~				

 $T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$

high bandwidth controller

▶ Tracking of a reference $T(s) \rightarrow 1$

LSU	Control	Experiments	
	00000		

 $T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$

$$S(s) = 1 - T(s) = \frac{1}{1 + P(s)C(s)}$$

high bandwidth controller

▶ Tracking of a reference $T(s) \rightarrow 1$

LSU	Control	Experiments	
	00000		

 $T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$

$$S(s) = 1 - T(s) = \frac{1}{1 + P(s)C(s)}$$

high bandwidth controller

► Tracking of a reference T(s) → 1
 ► Output Disturbance rejection S(s) → 0 ⇒ T(s) → 1

LSU ○	Control 0●0000	Experiments 0000000	

General Control Loop

 $T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$

high bandwidth controller

► Tracking of a reference T(s) → 1
 ► Output Disturbance rejection S(s) → 0 ⇒ T(s) → 1

$$S(s) = 1 - T(s) = \frac{1}{1 + P(s)C(s)}$$

high bandwidth controller

System output due to noisy measurements $T(s) \rightarrow 0$

LSU ○	Control 0●0000	Experiments 0000000	

General Control Loop

 $T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$

high bandwidth controller

 ► Tracking of a reference T(s) → 1
 ► Output Disturbance rejection S(s) → 0 ⇒ T(s) → 1

based on Skogestad and Postlethwaite (2005)

$$S(s) = 1 - T(s) = \frac{1}{1 + P(s)C(s)}$$

high bandwidth controller

- System output due to noisy measurements $T(s) \rightarrow 0$
- Very large controller outputs u(t)

M. Heuer et al. | 2014/08/28 | Page 12/30

	LSU	Control	
		00000	
State Space	ce Model		

$$\begin{split} \dot{x}(t) = & Ax(t) + Bu(t) \,, \\ y(t) = & Cx(t) + Du(t) \,, \end{split}$$

based on Skogestad and Postlethwaite (2005)

	LSU	Control	Experiments	
		00000		
State Space	e Model			

$$\begin{split} \dot{x}(t) = & Ax(t) + Bu(t) \,, \\ y(t) = & Cx(t) + Du(t) \,, \end{split}$$

- x(t) states of the system (energy storages)
 u(t) input to the system
- \blacktriangleright y(t) output of the system

based on Skogestad and Postlethwaite (2005)

	LSU	Control	
		00000	
State Spac	e Model		

$$\begin{split} \dot{x}(t) = & Ax(t) + Bu(t) \,, \\ y(t) = & Cx(t) + Du(t) \,, \end{split}$$

- > x(t) states of the system (energy storages)
- \blacktriangleright u(t) input to the system
- \blacktriangleright y(t) output of the system
- \blacktriangleright A describes the dynamic behavior of the system
- B describes how the input acts on the state
- C describes how the state are combined to the output
- \blacktriangleright D describes which inputs have a direct influence on the output

LSU	Control	Experiments	
	000000		

Model Identification

 P(s) = Measurement Identification Signal
 Matlab System Identification Toolbox

based on Ljung (1987)

M. Heuer et al. | 2014/08/28 | Page 14/30

	LSU	Control	Experiments	
		000000		
State Feedbac	k Controller			

$$\begin{split} \dot{x}(t) = & Ax(t) + Bu(t) \,, \\ y(t) = & Cx(t) + Du(t) \,, \end{split}$$

	LSU	Control	
		000000	
State Feed	back Contro	oller	

$$\begin{split} \dot{x}(t) =& Ax(t) + Bu(t) \,, \\ y(t) =& Cx(t) + Du(t) \,, \end{split}$$

$$u(t) = -Fx(t)\,,$$

	LSU	Control	Experiments	
		000000		
State Feed	back Contro	oller		

$$\begin{split} \dot{x}(t) = & Ax(t) + Bu(t) \,, \\ y(t) = & Cx(t) + Du(t) \,, \end{split}$$

$$u(t) = -Fx(t)\,,$$

$$\min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) \, dt \,,$$

based on Zhou et al. (1996)

M. Heuer et al. | 2014/08/28 | Page 15/30

	LSU O	Control 0000●0	Experiments 0000000	
State Feedback	< Controller			

$$\begin{split} \dot{x}(t) = & Ax(t) + Bu(t) \,, \\ y(t) = & Cx(t) + Du(t) \,, \end{split}$$

$$u(t) = -Fx(t)\,,$$

$$\min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) \, dt \,,$$

▶ Q and R are tuning parameter. e.g. $Q = C^T \cdot C$ and tune the response speed with R

based on Zhou et al. (1996)

M. Heuer et al. | 2014/08/28 | Page 15/30

	LSU O	Control 0000●0	Experiments 0000000	
State Feedback	< Controller			

$$\begin{split} \dot{x}(t) = & Ax(t) + Bu(t) \,, \\ y(t) = & Cx(t) + Du(t) \,, \end{split}$$

$$u(t) = -Fx(t)\,,$$

$$\min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) \, dt \,,$$

Q and R are tuning parameter. e.g. Q = C^T · C and tune the response speed with R
F = -lqr(A,B,C'*C,R);

	LSU O	Control 0000●0	Experiments 0000000	
State Feedback	< Controller			

$$\begin{split} \dot{x}(t) = & Ax(t) + Bu(t) \,, \\ y(t) = & Cx(t) + Du(t) \,, \end{split}$$

$$u(t) = -Fx(t)\,,$$

$$\min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) \, dt \,,$$

 $\blacktriangleright Q$ and R are tuning parameter. e.g. $Q = C^T \cdot C$ and tune the response speed with R

 \blacktriangleright x(t) is not measured in most cases.

	LSU O	Control ○○○○○●	Experiments 0000000	
State Estimat	ion			

based on Zhou et al. (1996)

M. Heuer et al. | 2014/08/28 | Page 16/30

	LSU O	Control	Experiments 0000000	
State Estimat	ion			

based on Zhou et al. (1996)

M. Heuer et al. | 2014/08/28 | Page 16/30

	LSU ○	Control	Experiments 0000000	
State Estimat	ion			

▶ The dual problem to state feedback

	LSU	Control	Experiments	
State Estimati	on			

The dual problem to state feedback
 Q_{obsv} and R_{obsv} are again tuning parameter. e.g. Q_{obsv} = B · B^T and tune the filtering of the noise with R_{obsv}

	LSU O	Control	Experiments 0000000	
State Estima	tion			

- The dual problem to state feedback
 Q_{obsv} and R_{obsv} are again tuning parameter. e.g. Q_{obsv} = B · B^T and tune the filtering of the noise with R_{obsv}
- L = -lqr(A',C',B*B',Robsv);

LSU	Experiments	

Contents

1 Introduction

- 2 Link Stabilizing Unit
- 3 Introduction to Control
- 4 Implementation and Experimental Results
- 5 Conclusion and Outlook

M. Heuer et al. | 2014/08/28 | Page 17/30

LSU	Experiments	
	000000	

Matlab VHDL Toolbox

Extends the Xilinx System Generator Toolbox

 Automatic code generation from a Simulink model (no VHDL knowledge required)

 Simulation of the real behavior (saturation, overflow, fixed point precision, etc.)

LSU	Experiments	
	000000	

Model Identification

M. Heuer et al. | 2014/08/28 | Page 19/30

LSU	Experiments	
	000000	

Model Identification

The model fits well to the dynamic behavior of the real plant.

M. Heuer et al. | 2014/08/28 | Page 19/30

LSU	Experiments	
	000000	

Identification

$$A = \begin{bmatrix} -253.8 & 1.133 \cdot 10^5 & 935.9 \\ -1.133 \cdot 10^5 & -1138 & -2017 \\ 935.9 & -4035 & -1.346 \cdot 10^5 \end{bmatrix},$$
$$B = \begin{bmatrix} 112.9 & 237.9 & -209.5 \end{bmatrix},$$
$$C = \begin{bmatrix} 225.8 & -475.9 & -418.9 \end{bmatrix}$$

M. Heuer et al. | 2014/08/28 | Page 20/30

LSU	Experiments	
	000000	

Effect of State Feedback

M. Heuer et al. | 2014/08/28 | Page 21/30

	LSU		Experiments	
0000		000000	000000	00

Effect of State Feedback

Its possible to change the dynamic behavior e.g. increase the damping.

M. Heuer et al. | 2014/08/28 | Page 21/30

LSU	Experiments	
	0000000	

Control Startup

M. Heuer et al. | 2014/08/28 | Page 22/30

LSU	Experiments	
	0000000	

Control Startup

The model based controller reaches the steady state faster ...

M. Heuer et al. | 2014/08/28 | Page 22/30

LSU	Experiments	
	0000000	

Dynamic behavior of an input disturbances

M. Heuer et al. | 2014/08/28 | Page 23/30

LSU	Experiments	
	0000000	

Dynamic behavior of an input disturbances

... and rejects disturbances much better than the PID controller.

M. Heuer et al. | 2014/08/28 | Page 23/30

	LSU		Experiments	
0000		000000	000000	00

Dynamic behavior of a coarse tuning step

M. Heuer et al. | 2014/08/28 | Page 24/30

	LSU		Experiments	
0000		000000	000000	00

Dynamic behavior of a coarse tuning step

Effects measurable with PID controller but not with LQG.

M. Heuer et al. | 2014/08/28 | Page 24/30

LSU		Conclusion

Contents

1 Introduction

- 2 Link Stabilizing Unit
- 3 Introduction to Control
- 4 Implementation and Experimental Results
- 5 Conclusion and Outlook

M. Heuer et al. | 2014/08/28 | Page 25/30

LSU		Conclusion
		••

Statements

LSU		Conclusion
		00

Statements

Use model based control approaches to a better performance

M. Heuer et al. | 2014/08/28 | Page 26/30

	LSU			Conclusion
0000		000000	000000	00

Statements

- Use model based control approaches to a better performance
- It is possible to achieve good control results for the LSU with a LQG controller

LSU	Experiments	Conclusion
		00

Conclusion

Conclusion

M. Heuer et al. | 2014/08/28 | Page 27/30

LSU	Experiments	Conclusion
		00

Conclusion

Conclusion

An overview of the LbSynch System was given

M. Heuer et al. | 2014/08/28 | Page 27/30
LSU	Experiments	Conclusion
		00

Conclusion

- An overview of the LbSynch System was given
- It was shown how to synthesis a LQG controller

LSU	Experiments	Conclusion
		00

Conclusion

- An overview of the LbSynch System was given
- It was shown how to synthesis a LQG controller
- The design controller was tested in an experimental setup

LSU	Experiments	Conclusion
		00

Conclusion

- An overview of the LbSynch System was given
- It was shown how to synthesis a LQG controller
- The design controller was tested in an experimental setup

Outlook

LSU	Experiments	Conclusion
		00

Conclusion

- An overview of the LbSynch System was given
- It was shown how to synthesis a LQG controller
- The design controller was tested in an experimental setup

Outlook

Test other model based controller types

LSU	Experiments	Conclusion
		00

Conclusion

- An overview of the LbSynch System was given
- It was shown how to synthesis a LQG controller
- The design controller was tested in an experimental setup

Outlook

- Test other model based controller types
- Include new MicroTCA boards and the final configuration

The End

Thank you very much for your attention

M. Heuer et al. | 2014/08/28 | Page 28/30

Further Reading

- L. Ljung. System identification: theory for the user. Prentice-Hall information and system sciences series. Prentice-Hall, 1987. ISBN 9780138816407. URL http://books.google.com/books?id=gpVRAAAAMAAJ.
- S. Skogestad and I. Postlethwaite. Multivariable Feedback Control Analysis and Design. John Wiley & Sons, Ltd, 2nd edition, 2005. ISBN 978-0-470-01168-3.
- K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Feher/Prentice Hall Digital and. Prentice Hall, 1996. ISBN 9780134565675. URL http://books.google.com/books?id=RPS0QgAACAAJ.

LQR via algebraic riccati equation

$$\begin{split} \dot{x}(t) = & Ax(t) + Bu(t) \,, \\ & y(t) = & Cx(t) + Du(t) \,, \\ & u(t) = & -Fx(t) \,, \\ & \min V = \int_0^\infty x(t)^T Q x(t) + u(t)^T Ru(t) \, dt \,, \\ & F = & R^{-1} B^T P \\ & A^T P + P A - P B R^{-1} B^T P + Q = 0 \end{split}$$

