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European X-ray Free Electron Laser (XFEL)

Idea
I Build a Camera to capture ultrafast processes in an atomic scale
I E.g.: Make a movie of the folding process of biomolecules

Some Numbers
I Wavelength of 0.05 to 6 nm, Pulse duration of less than 100 fs (10−15)
I Total facility length of 3.4 km with 101 accelerator modules

Courtesy of http://www.xfel.eu M. Heuer et al. | 2014/08/28 | Page 4/30
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Laser Based Synchronization System (LbSynch)
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Laser Based Synchronization System (LbSynch)

Requirements

I The relative jitter between all link ends should be less as possible

Current State
I Heuristically tuned PI controller

New Approach

Model based control

1. Model the dynamics of the system
2. Synthesis a suitable controller with this model
3. Verify the controller performance in an experiment
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Problem Statement

I How to synthesis a model based controller?
I Has a model based controller a better

performance?
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General Control Loop

Controller System
u

di

r e y

ym
−

do

n

I u(t) output voltage applied to the piezo amplifier

I y(t) the real timing difference
I ym(t) = y(t) + n(t) timing difference measured by the OXC
I n(t) noise of the balanced detector
I di(t) input disturbances, e.g. ripple of the piezo amplifier supply
I do(t) output disturbances, e.g. vibrations of the setup
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General Control Loop

Controller System
u

di

r e y

ym
−

do

n

T (s) = P (s)C(s)
1+P (s)C(s)

high bandwidth controller

I Tracking of a reference T (s) → 1

I Output Disturbance rejection
S(s) → 0 ⇒ T (s) → 1

S(s) = 1− T (s) = 1
1+P (s)C(s)

high bandwidth controller

I System output due to noisy
measurements T (s) → 0

I Very large controller outputs u(t)
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State Space Model

ẋ(t) =Ax(t) +Bu(t) ,

y(t) =Cx(t) +Du(t) ,

I x(t) states of the system (energy storages)
I u(t) input to the system
I y(t) output of the system
I A describes the dynamic behavior of the system
I B describes how the input acts on the state
I C describes how the state are combined to the output
I D describes which inputs have a direct influence on the output
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Model Identification

System
Identification Signal

e.g. White Noise, Step, ...
Measurement

I P (s) = Measurement
Identification Signal

I Matlab System Identification Toolbox

based on Ljung (1987) M. Heuer et al. | 2014/08/28 | Page 14/30
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State Feedback Controller

ẋ(t) =Ax(t) +Bu(t) ,

y(t) =Cx(t) +Du(t) ,

u(t) = −Fx(t) ,

minV =

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t) dt ,

I Q and R are tuning parameter. e.g. Q = CT · C and tune the
response speed with R

I F = -lqr(A,B,C’*C,R);
I x(t) is not measured in most cases.
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State Estimation

System

L

C1
s

A

B

y

ỹ

ỹ

−

u

di do

x̃

I The dual problem to state feedback
I Qobsv and Robsv are again tuning parameter. e.g. Qobsv = B ·BT

and tune the filtering of the noise with Robsv

I L = -lqr(A’,C’,B*B’,Robsv);
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ỹ

ỹ
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Matlab VHDL Toolbox

I Extends the Xilinx System Generator Toolbox
I Automatic code generation from a Simulink model (no VHDL

knowledge required)
I Simulation of the real behavior (saturation, overflow, fixed point

precision, etc.)
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Identification

A =

 −253.8 1.133 · 105 935.9

−1.133 · 105 −1138 −2017

935.9 −4035 −1.346 · 105

 ,

B =
[
112.9 237.9 −209.5

]
,

C =
[
225.8 −475.9 −418.9

]
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The End

Thank you very much for your attention
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Further Reading
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LQR via algebraic riccati equation

ẋ(t) =Ax(t) +Bu(t) ,

y(t) =Cx(t) +Du(t) ,

u(t) = −Fx(t) ,

minV =

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t) dt ,

F = R−1BTP

ATP + PA− PBR−1BTP +Q = 0
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