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Sławomir Sobczak from Research Group on Automatic Test Systems in Institute of Electronic

Systems for their valuable suggestions, technical support and work evaluation.

I would like to thank Dr. Stefan Simrock from DESY for his continuous support and

encouragement.

Finally, I want to thank my wife Monika for her inexhaustible patience and support, especially

in the last period of my work.

I acknowledge the support of Polish Ministry of Science in year 2007/2008 within the scope

of the research project N505 005 32/0598.

3



Abstract

The VXI/SCPI technology has been used for more than fifteen years. Due to the high price
of modern measurement and control systems, it was necessary to standardize their development.
Only then could the integration of hardware and software be done in a reasonable time and with
limited costs. The currently available standards are complex and hard to understand, which
causes problems with their implementation. Hence, the small manufacturers and laboratories
have been eliminated from this market. An integration of commercially available VXI devices
into a system is indeed costly but requires little effort, particularly in the case of message–based
devices programmable by SCPI. The situation becomes much more difficult when the developer
of a system must integrate a piece of electronics specific to his needs. Transformation into
a message-based device is difficult due to the complexity of the IEEE 488.2 and VXI standards,
and SCPI specification.

Having in mind all these problems, the thesis was stated as follows: it is possible in a small
laboratory environment to design an effective tool that is flexible enough to integrate some
specific electronics into a VXI/SCPI system as a message-based device.

The goal of this thesis was to build a universal tool that supports development of VXI
message-based devices programmable by SCPI messages and compatible with the VXI stan-
dard. Taking advantage of original features of the tool, a new methodology of VXI message-
based devices design was proposed. It shows how to speed up and simplify the development of
new devices.

Within the scope of this work, an electronic tool was designed and built. The tool consists
of a hardware board (VXI-IC) and associated software (VXI-SDK). VXI-IC is an electronic
card with an area less than one third that of the C size VXI module and is equipped with P1
and P2 connectors. The user electronics is located on a separate board connected mechanically
and electrically through a standard 96-pin, 3-row device connector; VXI-IC and user board
form together a C size VXI module. The VXI-IC card was built around a modern FPGA
chip, Virtex II Pro from Xilinx, which contains an embedded processor. This FPGA chip
allowed implementation of a complete VXI interface compatible with the IEEE 488.2 standard.
The VXI-IC contains firmware that parses and formats SCPI messages, executes a device driver,
and communicates with the user electronics.

VXI-SDK is a software development kit associated with VXI-IC. It is used to configure
VXI-IC, and to define new SCPI commands specific to the adapted electronics. VXI-SDK also
contains an editor for writing ANSI-C code for the device driver executed in VXI-IC.

The tool was tested with a resonant cavity controller for the FLASH accelerator at DESY
in Hamburg. The existing functionality of the controller was extended by a SCPI driver and
a VXI synchronization mechanism.

The tool can be an inspiration for research on message-based devices in the new and exciting
LXI technology.
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Streszczenie

Elastyczne narzędzie elektroniczne do rozwoju
komunikatowych przyrządów VXI

Technologia VXI/SCPI została po raz pierwszy zastosowana do konstrukcji inteligentnych
przyrządów pomiarowych około piętnastu lat temu. Ze względu na wysoką cenę współcze-
snych systemów pomiarowo–sterujących (SPOM), konieczne było podporządkowanie ich pro-
jektowania ogólnie przyjętym standardom. Tylko wtedy bowiem integracja sprzętu i opro-
gramowania okazała się procesem o akceptowalnym horyzoncie czasowym, a perspektywa
użyteczności systemu mogła być liczona przynajmniej w dziesiątkach lat. Obecnie problem
polega między innymi na tym, że dostępne normy aparaturowe są w swej znakomitej wię-
kszości trudne do zrozumienia i implementacji. Dlatego mniejsi producenci (nie mówiąc
o laboratoriach badawczych) zostali całkowicie wyeliminowani z tego atrakcyjnego rynku.
Dopiero pojawienie się układów FPGA z wbudowanym procesorem stworzyło potencjalną
szansę stworzenia narzędzia, które uwolniłoby projektanta SPOM od wielu –– wprawdzie
dostępnych szczegółów –– ale jednocześnie głęboko ukrytych w tekstach obowiązujących go
norm. Problem ten jest szczególnie ważny w przypadku konstrukcji przyrządów komunika-
towych VXI, gdzie wymagana jest dogłębna znajomość standardów VXI i IEEE 488.2, a także
specyfikacji SCPI.

W związku z powyższym, w pracy została postawiona następująca teza. Możliwe jest
stworzenie elastycznego narzędzia, które pozwala w warunkach laboratoryjnych na tra-
nsformację specyficznej elektroniki użytkownika w komunikatowy przyrząd standardu
VXI.

Koncepcja tej pracy zakładała stworzenie uniwersalnego narzędzia wspomagającego pro-
jektowanie przyrządów programowalnych z poziomu zbioru komend SCPI i kompatybilnych
sprzętowo ze standardem interfejsu VXI. Dzięki takiemu narzędziu, projektowany przyrząd jest
widziany w środowisku sprzętowym VXI i programowym zbioru komend SCPI jako przyrząd
typu komunikatowego.

W pracy zaproponowano metodologię budowy takich przyrządów w oparciu o zaproje-
ktowane narzędzie. Metodologia ta pokazuje w jaki sposób można przyspieszyć i uprościć
proces budowy przyrządu.

W ramach pracy zostało zrealizowane narzędzie w postaci niezależnej płyty elektronicznej
(płyty interfejsu VXI-IC) i pakietu oprogramowania wspomagającego (VXI-SDK) zainsta-
lowanego na zewnętrznej platformie. Oprogramowanie zagnieżdżone płyty VXI-IC (firmware)
realizuje interfejs pomiędzy szyną VXI z jednej strony a specyficzną elektroniką projektanta
z drugiej strony.

VXI–IC to płyta drukowana, wyposażona w złącza P1 i P2, o rozmiarach nie przekraczają-
cych jednej trzeciej powierzchni płyty VXI typu C. Transformowana do środowiska VXI/SCPI
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elektronika użytkownika znajduje się na osobnej płycie (tzw. płycie przyrządu), mocowanej
mechanicznie do płyty VXI-IC i połączonej z nią elektrycznie za pomocą standardowego,
trzyrzędowego złącza 96-cio kontaktowego — tworząc ostatecznie moduł VXI o rozmiarze C.

Spełnienie standardowych wymagań dla przyrządu komunikatowego stało się możliwe dzię-
ki nowoczesnemu układowi FPGA Virtex II Pro firmy Xilinx, w którym zainstalowany jest
procesor PowerPC firmy IBM. Układ FPGA umożliwił realizację oprogramowania zagnieżdżo-
nego płyty VXI-IC. Oprogramowanie składa się z interfejsu komunikatowego VXI wraz z ko-
mponentami peryferyjnymi procesora zrealizowanymi przy użyciu języka VHDL. Płyta VXI-IC
zawiera również oprogramowanie zagnieżdżone w lokalnym procesorze, które zapewnia zgo-
dność przyrządu ze standardem IEEE 488.2. Całość oprogramowania zagnieżdżonego realizuje:
konfigurowalny interfejs VXI, interpretację rozkazów SCPI, ich dekodowanie, formatowanie
odpowiedzi, oraz komunikację z elektroniką użytkownika.

VXI-SDK to zainstalowany na zewnętrznej platformie pakiet oprogramowania, służący do
konfiguracji oprogramowania zagnieżdżonego płyty VXI-IC. Jego zadaniem jest umożliwie-
nie użytkownikowi: definiowanie nowych rozkazów SCPI, pisanie w języku ANSI C wła-
snych funkcji sprzężonych z nowymi rozkazami SCPI dla sterowanika elektroniki użytko-
wnika, definiowanie komunikatów o błędach użytkownika, konfigurowanie interfejsu VXI,
oraz konfigurowanie interfejsu przyrządu użytkownika. Dzięki połączeniu komputera zewnę-
trznej platformy z systemem VXI poprzez bibliotekę VISA, VXI-SDK umożliwia konfigurację
oprogramowania zagnieżdżonego płyty VXI-IC bezpośrednio w systemie docelowym.

Zrealizowane narzędzie zostało wyprodukowane i przetestowane ze sterownikiem wnęk re-
zonansowych SIMCON 3.1 dla akceleratora FLASH w Hamburgu (Niemcy). Istniejąca funkcjo-
nalność sterownika SIMCON 3.1 została zachowana, a nawet wzbogacona o zagnieżdżony
sterownik SCPI i system synchronizacji VXI.

W ostatnim rozdziale została zaproponowana wizja wykorzystania tej pracy do badań nad
przyrządami komunikatowymi w nowej, fascynującej technologii LXI.
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1

Introduction

1.1 Thesis Origin

In 2004, the author of the dissertation joined the Research Group on Automatic Test Sys-
tems led by Prof. Konrad Hejn at Warsaw University of Technology (WUT). Among other
activities, the Group is involved in research of new technologies in VMEbus Extensions for
Instrumentation (VXI) systems. Since 1990 the Group has put much effort into popularization
of the VXI standard in the university environment. Several VXI devices were designed and de-
veloped in the past but there is still a need for some new tools and devices compliant to the VXI
standard that would support the didactic branch of the Group’s activities.

Since 2004 the author of the dissertation has been collaborating with the Deutches Elektro-
nen-Synchrotron (DESY) in Hamburg, Germany [1] within the scope of the international X-ray
Free Electron Laser (XFEL) project [2]. This is a new European project, which started in 2007.
XFEL is a linear electron accelerator which will produce high intensity X-rays for materials and
biological research. The author has been working in the international team which built a Low
Level Radio Frequency (LLRF) control system for the existing, prototype Free Electron Laser
at Hamburg (FLASH) accelerator [3]. The existing LLRF system is a kind of a measurement
and control system [4]. It took advantage of world-wide technologies and was enhanced by
high-tech solution customized to the FLASH accelerator environment. New technologies must
be involved in construction of the LLRF control system for XFEL, because it is meant to work
for the next 20 years starting in year 2013. The author is involved in development of the LLRF
system, particularly in its digital part.

The activities of the Warsaw and DESY groups converged at the time that led to the formu-
lation of this thesis in 2004. Most of the results achieved in this work are addressed to small
laboratories such as the Warsaw Group, yet they are useful for the bigger laboratories such as
DESY. Thus, the results of the dissertation could contribute to the control of the XFEL, since
they show how to utilize advantages of the VXI standard, and, in the future, of the LXI (LAN
eXtension for Instrumentation) standard, for a LLRF system. The English language presenta-
tion of this work is motivated by the international audience to which it is addressed.
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1.2 Dissertation Contents

This work is divided into 8 chapters and several appendices.

Chapter 1 presents the origin of the dissertation and some technical issues such as a glos-
sary and editorial remarks.

Chapter 2 gives historical overview of world-wide computer technologies and standards
relevant for instrumentation. Special attention is put on the VXI standard and SCPI program-
ming techniques since they are the key points for this work.

Chapter 3 describes, layer by layer, hardware and software components that could be dis-
tinguished in a VXI system. The detailed understanding of the software techniques used for
development of device drivers is crucial for the new development method proposed in this work.

Chapter 4 exhibits problems connected with development of VXI message-based devices
in small laboratories and formulates the dissertation thesis. It also contains goals and require-
ments that must be met in order to fulfill these goals.

Chapter 5 describes the model of the designed tool and proposes a new methodology for
effective development of VXI message-based devices.

Chapter 6 includes implementation issues for the tool. It briefly describes the design of
the tool, realization of the hardware board, firmware implementation and associated software.
More attention is put on unique technical solutions that allowed meeting the assumed require-
ments.

Chapter 7 presents the application of the tool to the LLRF control system for accelerating
modules based on the SIMCON 3.1 board. This application proves the effectiveness of the tool.
It can be also treated as a tutorial for using the tool and the methodology proposed in chapter 5.

Chapter 8 summarizes the entire work, uncovers weak points of the tool and explains ideas
for its improvement. This chapter also suggests the modifications necessary to built similarly
effective tool for the development of LXI message-based devices.

1.3 Glossary

Several terms are defined in this section which have special meaning important for proper
understanding of the dissertation.

VXI controller is in charge of bus communication and device management. It is located
in a slot 0 of the VXI chassis. It controls the data flow, performs addressing and other bus
management functions such as bus arbitration, interrupts acknowledgment, etc. The VXI sys-
tem controller is usually a resource manager, detecting active devices and assigning system
resources to them.

VXI device, also simply called a device, is a component of a system that does not func-
tion as the system controller but typically exchanges data with the VXI controller, either as
binary blocks or text messages. The VXI device consists of a VXI interface and device specific

14



functions.
Tool, also called VXI-MBT, is the subject of this work. The word tool is used in chapters

from 1 to 4. The VXI-MBT is used starting from chapter 4.
User electronics or user device is a piece of specific electronic equipment that is adapted

to the VXI/SCPI standards using the tool.
Control software is used to control a VXI system. This software is located in a VXI

embedded computer, or on a remote, stand-alone, personal computer.
VXI configuration registers are obligatory for each VXI device. They are used by a VXI

controller for identification of a device in a VXI system.
VXI communication registers are obligatory in each VXI message-based device. They

are used for implementation of the obligatory Word Serial Protocol and other optional commu-
nication protocols.

Working registers are completely device dependent. They are used to control device func-
tionality and to report its state.

SCPI message is a text string compliant with the IEEE 488.2 syntax that is exchanged
between control software and a VXI device. It is either a command or a query sent from
the control software to a VXI device, or a response that is sent from a VXI device to the control
software.

1.4 Editorial Remarks

In order to emphasize some keywords in the text, a different typefaces were used with respect
to the regular text:

• the Typewriter style is used for SPCI messages, Common Commands and C func-
tions,

• the Slanted style is used for keywords indicating components presented in figures, and
special components defined by standards documentation,

• the Italic style is used for signals and register names.

The document contains a large number of acronyms. The full name of each acronym is writ-
ten intentionally once, when it appears for the first time in the text. The list of acronyms located
at the beginning of the document is meant to remind the reader of some of them. Acronyms in
common use in measurement and control system circles might not be included.
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2

Industrial Standards for Instrumentation
— Historical Overview

The evolution of measurement and control systems has been prompted by rapid development
of computer technologies for more than 30 years. It has aimed at building faster, automated
and integrated systems to provide to users with more precise information and to give more
control of the explored objects. Computer manufacturers and software vendors proposed many
ideas, approaches, techniques and methodologies. Their usability was verified every day in
practice by a large number of developers and users around the world. Only solutions commonly
accepted by the market passed the exam and finally became commercial standards. The strong
competition eliminated customized, expensive solutions from the market. Some of the most
popular commercial standards were converted into international standards, but only a few of
them were adopted by the instrumentation industry as a basis for measurement extensions.
The most popular international standards have dictated trends in the instrumentation industry
for decades.

This section presents the past evolution of some of the computer technologies and standards
and of their adoption by instrumentation industry. Figure 2.1 shows dependencies graph of
them and provides historical overview.

2.1 From IEEE 488 to Modern VXI Systems

The first standard globally used in measurement and control systems was IEEE 488, developed
by the Institute of Electrical and Electronics Engineers (IEEE) in 1975. It defined a digital
bus which was originally developed by Hewlett-Packard and called Hewlett-Packard Interface
Bus (HP-IB) [5]. It is a simple and fully digital bus which permits easy integration of stand-
alone measurement devices into a system and simultaneously exempts system developers from
cumbersome communication at the register level. The interface quickly became very popular
in the instrumentation industry. In 1975 the IEEE committee gave it its present number and
renamed it to General Purpose Interface Bus (GPIB) .
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Figure 2.1: Diagram of Standards Evolution and Dependencies

The IEEE 488 standard indeed assures that messages have been accurately transfered be-
tween two or more devices in a system, but does not guarantee that each device will interpret
properly all possible messages sent to it, or will properly create all necessary responses. A wide
latitude of interface capability is permitted within the scope of this standard which often results
in operational incompatibility among interconnected devices. Thus, in 1987, the IEEE 488
standard was revised and upgraded to ANSI/IEEE Std 488.1-1987 — IEEE Standard Digital
Interface for Programmable Instrumentation [6]. In the same year the IEEE 488.2 was launched
[7]. The IEEE 488.2 standard arose from the need for a common messages format for device
communication. It is supplementary to IEEE 488.1 and brings into a device some artificial in-
telligence. It defines syntax of messages, introduces a set of Common Commands, and defines
message exchange protocol and a message exchange control interface. The message exchange
control interface is defined as a state machine that reacts on external events such as incoming
messages, response requests, and measurement device actions. It prevents device deadlocks
and loss of messages as well as managing input and output queues of messages and responses,
and reporting protocol errors.

Compared to present computer buses, GPIB was rather primitive. There was only one
controller in a system. The GPIB bus was 8-bit wide and its data multiplexed with addresses.
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The maximum data transfer rate on the bus was 1MB/s for standard communication protocol
(handshake) or up to 8MB/s for HS488 (high-speed handshake developed by National Instru-
ments in 1993)[8]. But GPIB had one important advantage at that time. The digital circuit
responsible for bus interface was fairly simple and several integrated circuits implementing
the GPIB interface appeared on the market. Such a single chip interface was very convenient to
use for development of GPIB devices. Developers focused on sending and receiving messages
instead of signal control or transmission flow control. But soon new and faster buses appeared
on the market, offering alternative interfaces for applications with higher bandwidth.

In parallel to IEEE 488.x, the computer communication buses were evolving, too. Although
GPIB has been very popular and easy to implement in measurement devices, the limited data
transfer rate on the bus became a real issue. The GPIB transfer of 1MB/s was good enough in
most non-electronic applications, but measurement and control systems were getting more and
more complex, and more data was being transfered on the bus. Developers of measurement
and control systems started looking for communication buses with higher throughput. In order
to avoid expensive development of custom communication buses, the most popular existing
computer buses became points of interest. A typical computer bus provides a well tested com-
munication medium with optional interrupts and arbitration mechanisms. But measurement
and control systems require in addition precise synchronization tools. Therefore, the computer
bus standards had to be extended by precise hardware or/and software synchronization mech-
anisms. The following measurement standards were developed as extensions of computer bus
standards:

• VME Extensions for Instrumentation - VXI

• PCI Extensions for Instrumentation - PXI

• LAN Extensions for Instrumentation - LXI

In 1979 Motorola developed their new processor 68000. In addition, they built an asyn-
chronous bus in order to support the processor. The first version of this parallel, asynchronous
bus was named VERSAbus [9]. The bus quickly became popular among computer manufac-
turers. The engineers from Motorola-Europe division added to it mechanical standards that
became later international standards. They defined standard racks, chassis, and Printed Circuit
Board (PCB) form factors, formerly named by the International Electrotechnical Commission
as IEC 297-3 and currently known as IEC 60297-3-101 [10]; connectors IEC 603-2 currently
known as IEC 60603-2 [11] and marked as DIN 41612. The outcome of these mechanical and
electrical standards was VERSAbus-E (VERSAmodule Eurocard bus). In October 1981, Mo-
torola, Mostek and Signetics announced their support of VERSAbus-E and gave it its present
name Versa Module Eurocard (VME) bus. The VME bus became a very popular standard and
in 1987 the revision C was released, officially standardized by IEC as IEC 821 VME bus and
by IEEE as ANSI/IEEE 1014.
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In 1987, engineers from the biggest manufacturers of measurement devices such as Tek-
tronix, Wavetek, Colorado Data Systems, HP, and Racal Dana founded a committee for specifi-
cation of an open architecture standard for instrumentation based on the VME bus and Eurocard
standards, and compatible with IEEE 488.2-1987 devices. They agreed to support a modular
instrumentation architecture named VXI bus. In the next years other companies joined the col-
laboration and finally formed the VXI Consortium. After several workshops and technical
meetings the main specification with four revisions was created in order to insure complete
documentation of the VXI standard. In 1992, the VXI-1 Revision 1.4 specification was ap-
proved by IEEE with the number 1155-1992. Since then two new revisions have been released,
mainly due to evolution of the VME bus. In 1994, IEEE released a new version of the VME
bus specification named ANSI/VITA 1-1994, known as VME64 [12]. The new standard de-
fined multiplexing of address and data lines for 64-bit addresses and 64-bit data transmission
on the VME bus. It also defined 5-row, 160-pin P1 and P2 connectors where the outer rows
were reserved for later releases. The D64 data transmission and RETRY* line were incorpo-
rated in revision 2 of the VXI standard and the revised revision VXI-1 Rev. 2.1 was released
in 1998 [13]. And again, in 1997, ANSI and the IEEE released an update of the VME bus un-
der ANSI/VITA-1.1, commonly named VME64x or VME64 Extensions. This version defines
the meaning of pins on rows d and z of the 5-row connectors P1 and P2. It also defined two
transmission protocols 2eVME and 2eSST. The latter one increased data transfer rate on VME
to 320MB/s [14]. The last version of the VXI standard released in 2003 under number VXI-1
Rev. 3.0 [15] incorporated A64 addressing mode from VME64 and 2eVME transfer protocol
from VME64x which increased the data transfer rate on VME bus up to 160MB/s.

With VXI and IEEE 488.2 standards becoming more and more popular in measurement
and control systems, the need for software standardization became an important issue. The first
attempt was to unify syntax of data exchanged between control software and devices. In 1989,
Hewlett-Packard introduced a device control technique based on ASCII codes and named it
Test & Measurement Systems Language (TMSL) . In the same year TMSL was verified by
a committee of leading measurement device manufacturers which founded the SCPI Consor-
tium and developed SCPI — a set of Standard Commands for Programmable Instrumentation
[16], [17]. SCPI has taken syntax from IEEE 488.2, defined sets of commands based on a stan-
dardized model of a measurement device, and determined the semantic of commands. Although
the SCPI specification doesn’t say explicitly that it defines command semantics, the semantical
meaning of messages is mentioned several times in the specification. Unlike IEEE488.2, SCPI
is independent of the communication interface — it is strictly a software standard. SCPI mes-
sages can be exchanged between devices using RS232, RS482, Ethernet, GPIB or VXI bus.
SCPI became very popular in VXI systems, especially for message-based devices. The big
advantage of SCPI is that it is a purely textual set of commands and can be implemented on
any computer platform and in any programming language. Nowadays, SCPI is also used in
Application Development Environments (ADE) such as LabWindows, LabVIEW or VEE Pro.
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Although SCPI is still in use and yearly updates are released, it has never become an interna-
tional standard, but quite often in the literature it is called a standard — a commercial standard.

Although SCPI simplified device programming, it didn’t solve the problem of how to write
a device driver which can be easily incorporated in a user applications for measurement and
control systems. That was particularly important for devices programmed at register level, be-
cause such device must be provided with an associated driver in order to keep users away from
the details of programming device working registers. The software developers were strug-
gling with problems of how to write programs for measurement devices which can be portable
across different computer platforms, can operate with software from other vendors, or even,
how the same software can be used for devices from different vendors. A first attempt at de-
vice driver standardization was made in 1993 when the VXIplug&play Alliance was formed. It
proposed common standards and practices for software development based on well defined and
complete system frameworks. This organization was primarily founded to support VXI mea-
surement and control systems, but the VXIplug&play specification went beyond the scope of
VXI and offered interoperability for both hardware and software on various computer platforms
[18].

But some software vendors noticed a need for further standardization of device drivers. In
1998, the IVI Foundation was formed and proposed Interchangeable Virtual Instrument drivers.
IVI offered a new architecture of the device drivers that supported interchangeability of devices
and drivers from various vendors [19]. Interchangeability means that the same device driver
can be used for devices of the same class from different vendors. The idea of interchangeable
drivers quickly became very popular among software developers, instrument vendors, end-
users, and system integrators. In 2002, the VXIplug&play Alliance was incorporated into
the IVI Foundation and part of the VXIplug&play specification was utilized. In the same year
the SCPI Consortium also became a part of IVI Foundation. The activity of SCPI continues
and annual meetings on SCPI specification updates are organized under supervision of the IVI
Foundation.

2.2 PXI and LXI Standards

The success of the VXI standard stimulated developers to adapt other computer communication
buses to measurement and control systems. In 1990, the Intel company started development of
a communication bus for personal computers — Peripheral Component Interconnect. PCI bus
was meant for attaching peripheral devices to a computer motherboard. In 1992, revision 1.0
of the PCI specification was released. In the next years new revisions completely defined PCI
including connectors, motherboard slots, configuration procedures, etc. Over one decade en-
hancements to PCI led to an improvement of transmission speed up to 266 MB/s and doubling
of the bus width to 64-bit.

The popularity of the VME standard inspired companies to built cardcage versions of PCI
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for instrumentation. In order to create cardcage devices as in VXI systems, the CompactPCI
(cPCI) standard was introduced in 1992. It used the Eurocard standard and defined a new
backplane with the PCI bus as a communication core. cPCI is an open specification supported
by the PCI Industrial Computer Manufacturers Group (PICMG) [20]. PICMG was founded by
companies that make use of PCI in embedded applications. The cPCI specification was released
in 1995 under name PICMG 2.0. In the following years PICMG issued several subsidiary
specifications PICMG 2.x which defined hot swap capability, PCI Mezzanine Card (PMC),
system management, electronic keying and application of serial communication standards on
the backplane.

The cPCI standard defined five connectors on the backplane. Connectors J1 and J2 are used
for PCI implementation and the other connectors contain general purpose I/O pins which are
used for implementation of subsidiary PICMG 2.x specifications.

Analogous to the VXI standard, which grew up on a VME basis, the PXI standard was
developed based on cPCI. In 1997, the first revision of the PXI specification was released by
the PXI System Alliance (PXISA). Some of pins on the J2 connector reserved in cPCI were
adapted in PXI. The cPCI bus was extended by a 10MHz system clock, eight shared trigger
lines, and low-skew trigger lines in a star topology. PXI also defines 13 lines for a local bus
between two adjacent modules. The PXI standard doesn’t define message-based devices. Most
PXI devices are register-based with obligatory registers defined by the PCI standard. A disad-
vantage of PXI is the lack of shielding definition in the specification. This is an important issue
for measurement devices since Electromagnetic Interference (EMI) from digital cards may sig-
nificantly influences some of the sensitive analogue cards, and limits their resolution to 10–12
bits. The PXI standard also refers to the VXIplug&play specification and defines extensions
for integration of the communication library with PXI modules. PXI also defines interfaces to
VXI and GPIB.

In 2004, Intel introduced a new computer expansion card interface named PCI Express,
abbreviated as PCIe [21]. The specification of this standard is maintained by the PCI Special
Interest Group (PCISIG). PCIe defined links for serial communication in order to replace PCI
and Accelerated Graphic Port (AGP) computer interfaces. PCIe consists of serial, full-duplex
links called lanes. Each PCIe slot can have up to 32 lanes, connecting up to two devices at both
ends. For communication of more devices a special PCIe switch is required. Each lane can
transfer up to 250MB/s in each direction. PCIe 2.0, released in 2006, doubles the data rate.

Again, the computer standard was adapted to measurement and control systems. First of
all, the PCIe standard was incorporated in cPCI and then, in 2005, PXISA released the PXI-5
specification, which includes PCIe [22]. The PXI Express defined a new connector with dif-
ferential pairs for fast communication. In PXI Express chassis the PXI-1 standard is allowed
which means that hybrid chassis may contain slots for traditional PXI and new PXIe modules.
PXIe also uses differential lines for triggers, clocks, and serial communication interconnections
between modules.
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Another very popular computer interface is Ethernet. Nowadays, almost every computer
or measurement device has an Ethernet connector. Ethernet was originally developed by engi-
neers from Xerox in 1975. After a few years of experimentation, this packet switched protocol
was used for networking of computers in Local Area Networks (LANs) . In 1979, Ethernet was
standardized as a 10Mb/s communication protocol with 48-bit destination addresses. It was
also approved by IEEE under the number 802.3 in 1985 [23]. There are several physical im-
plementations of Ethernet which are defined in IEEE 802.x specifications. Ethernet is the most
dynamically evolving standard with several versions; the maximum Ethernet bit rate is now
10Gb/s on various physical communication media.

Recently, Ethernet has become the most popular standard for computer communication due
to cheap mass production, so it is hardly surprising that there have been attempts to use Ethernet
in measurement and control systems. The biggest problem of using standard Ethernet in mea-
surement and control systems has been the uncertainty of the packet delivery time. Depending
on traffic, the delivery time could vary by several milliseconds and sometimes packets might
even be lost. The main synchronization requirements of measurement and control systems can’t
be fulfilled.

This problem was solved by the new IEEE 1588 standard introduced in 2002. IEEE 1588
defined a precise clock synchronization protocol for networked measurement and control sys-
tems. This protocol, also called Precision Time Protocol (PTP), guarantees synchronization
in the submicrosecond range, better than 100ns across an Ethernet network, if the subnet for
measurement and control system is carefully designed. In this case special Ethernet adapters
and switches with hardware implementation of IEEE 1588 are required for the precision men-
tioned above [24]. This standard has much better accuracy than similar, existing Network Time
Protocol (NTP). IEEE 1588 is also useful for applications where Global Positioning System
(GPS) is not available or the cost of a GPS receiver is an issue [25].

The IEEE 1588 standard stimulated engineers to develop the next generation of standard for
instrumentation named LXI [26]. In 2005, Agilent Technologies and VXI Technology compa-
nies founded the LXI Consortium. The main goal of the consortium was to develop a new
standard based on Ethernet and synchronized by PTP. The main advantage of LXI is incorpo-
ration of existing computer networks which allows building a measurement and control system
distributed across a large geographical area without any additional hardware/software cost for
interfaces. Any measurement device that has a LAN interface may become a part of the sys-
tem; any computer that is connected to the same network can control the system. LXI defines
stand-alone devices with small and flexible housings. An intention of LXI housing is the possi-
bility of installation in 19 inch racks. The LXI device doesn’t have a front panel, yet a WWW
interface is required. Each LXI device should also provide an IVI driver with minimum func-
tionality defined by the IVI specification. It is also recommended that LXI devices support
SCPI messaging.

LXI also defines an optional hardware trigger bus for device synchronization when several
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nanosecond precision is required. But the trigger bus in a device requires another connector
dedicated to the synchronization signals and separate cabling must be assembled.

With several adapters available on the market, such as VXI/LAN or GPIB/LAN, other mea-
surement devices or systems may be integrated with LXI.

2.3 Summary — Why VXI Systems?

Several measurement standards, computer interfaces, programming languages, software tech-
niques and tools now exist on the market. Although almost 35 years has passed since the first
computer measurement and control systems, neither universal bus standards nor universal soft-
ware has been developed. The design of a user measurement and control system depends on
several aspects which must be taken into account, such as the purpose of the system, the archi-
tecture, size, power consumption, resolution and of course the price. None of the standards and
technologies is able to fulfill any combination of these aspects for every solution.

This chapter presented a number of the standards which have played a significant role in
the development of today’s measurement and control systems. Many of them became de iure

standards approved by international organizations such as IEEE or IEC, e.g. VXI, IEEE 488.2,
Eurocard, Ethernet, etc. These are hard, invariant standards; manufacturers must follow them
strictly in order to build compliant devices. If a new revision of a particular standard is released,
the organization usually takes care of backward compatibility, so that legacy devices can still
work in modernized systems. All others are de facto standards (industrial standards), usu-
ally developed by organizations, consortia, committees, alliances of manufacturers, e.g. SCPI,
IVI, VXIplug&play, PXI, LXI, etc. The existence of these standards depends on market eco-
nomics. They are supported when there is demand for devices based on them, and may vanish
if the companies which created them disappear. A new revision doesn’t need to be backward
compatible if it is not profitable.

Also, combinations of different standards are of benefit to the customers. For example,
the de iure VXI and IEEE 488.2 standards profit from message-based devices which talk to
each other using the de facto SCPI standard. As long as the VXI standard is used, SCPI will
be used — although SCPI is also used in conjunction with other standards. The market has
verified the usability of the VXI standard; there are a number of companies which have been
developing VXI devices for many years. One can expect that the new, de facto LXI standard
will soon become an international standard due to its being based on Ethernet (IEEE 802.3),
synchronization protocol (IEEE 1588), and its rapidly growing popularity.
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3

Modern VXI/SCPI Measurement and
Control Systems — State of the Art

VXI systems have been evolving for 21 years. Although three revisions have been released until
now, no major modifications to the standard were introduced with respect to the first revision.
New revisions of the VXI standard have mainly taken advantage of VME bus improvements.
In case of software for VXI systems, no international standard has been established. A huge
number of software techniques have been used for the control of VXI systems. Most of them
were developed for custom applications and are not used any more. A few of the software
techniques mentioned in chapter 2 are still being used, and they became the industrial standards
commonly used in modern VXI systems. This chapter presents the most popular software
standards and techniques, and their relationship to hardware.

Figure 3.1 presents the layering of hardware and software in modern VXI/SCPI systems.
There are a variety of hardware components and software techniques which users may want to
incorporate in their VXI systems. Several aspects must be taken into account before the system
can be built. A typical VXI system will include neither all of these layers nor all of the computer
interfaces presented in figure 3.1. The following sections briefly describe each layer, its role in
the VXI system, and the benefits it provides.

3.1 VXI Devices

A VXI device is a piece of electronics which performs specific functions in a measurement and
control system. Physically the device takes the form of an electronic module which is able to
operate only in a VXI chassis. One VXI module may contain one or more VXI devices, and
may occupy one or more slots of the VXI chassis. Each VXI device contains a VXI interface
and one or more optional interfaces on a front panel, e.g. high quality analog I/O. The VXI
standard defines four types of devices: register-based, message-based, memory, and extended
devices. But only two of them have become very popular: message-based and register-based.

Register-based devices are popular due to a simple construction similar to VME devices.
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Figure 3.1: Architecture of a Modern VXI System

The design of such a device is relatively easy as it must be only furnished with a few configu-
ration registers (VXI obligatory registers) and several device dependent working registers for
its operation (similar to VME devices), as presented in figure 3.1. The artificial intelligence
needed to control the device is located in higher layers of the control software.

Register-based devices enable direct access to working registers from the VXI bus. The soft-
ware controls such devices by reading and writing binary data to working registers. Writing
effective control software for a register-based device requires from the programmer detailed
knowledge of the meaning of each bit in each working register. In addition, good knowledge of
device behavior is required, because the ordering of reads and writes is also important. Software
written for one register-based device in a specific application usually doesn’t match to other ap-
plications. In many cases manufacturers of register-based devices provide basic software for
device operation, called in this dissertation a device driver. Such a driver hides the complexity
of working register programming and offers a more general, higher level software interface
which can be used in several user applications. But the device driver is in many cases a custom
approach and it is not portable to different development platforms or applications. An attempt
at device driver standardization was made by the VXIplug&play Alliance. Further standard-
ization was done by the IVI Foundation, as described in this chapter. The left part of figure
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3.1 presents the complete hardware and software setup for register-based devices with different
sort of device drivers.

Message-based devices exchange data with control software using a communication pro-
tocol. Instead of the binary data for register-based devices, the communication protocol trans-
ports messages between a message-based device and control software. Each message-based
device should implement at least one communication protocol. The device should include
enough local intelligence to interpret and decode messages as well as to format and send back
responses. In addition to the configuration registers, the VXI message-based device should
contain a set of communication registers for the message transport. The VXI standard defines
for the message-based device only one obligatory communication protocol, called Word Serial
Protocol (WSP). A few obligatory WSP commands should be implemented for basic configu-
ration of message-based devices, see [15] section C.2.4. In addition, the VXI standard defines
optional conformance of message-based devices to the IEEE 488.2 standard. This rule implies
that the message-based devices may exchange messages based on the IEEE 488.2 syntax, and
according to the message exchange protocol, also defined in the IEEE 488.2 standard. Thus,
SCPI messaging can be implemented on message-based devices compliant to IEEE 488.2. Al-
though the VXI standard doesn’t specify the use of SCPI for message-based devices, SCPI
is based on the IEEE 488.2 syntax and it is natural to use it. Nowadays, almost every VXI
message-based device is programmed by using SCPI.

Communication by messages requires additional processing power in the device itself.
The received SCPI commands must be somehow interpreted and executed, and the responses
must be formatted in a standard manner. Such complex operations require a processor on board
and some memory for buffering the input and output messages. The SCPI command parser
and response formatter comprise a SCPI processor. The set of execution routines associated
with the SCPI commands form a device driver. The SCPI processor and the device driver form
a so-called SCPI driver. The idea of message-based devices is presented on the right side of
figure 3.1.

3.2 VXI Controllers

The VXI controller performs two roles in a VXI chassis; it is responsible for VXI bus control,
and for resources management. As a bus controller, it arbitrates the traffic on the bus, controls
the interrupt priority handling scheme, generates triggers, and communicates with external sys-
tems or computers. The resource manager performs VXI subsystem self-configuration. This
includes device identification, dynamic address assignment, address space configuration, inter-
rupts enabling, handlers assignment, triggers signal assignment, etc.

The VXI controller is a module installed in slot 0 of the VXI chassis. It may be equipped
with different types of digital interface on a front panel for communication with the con-
trol software. There are several controllers with computer interfaces on the market, such as
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the Agilent E8491B with FireWire [27] and the VXI Technology controller with a USB in-
terface [28]. Some of the controllers have interfaces to other measurement buses such as
the Agilent E1406A [29] with GPIB, Agilent E1482B with Multisystem Extension Interface
(MXI) [30][31], or the VXI Technology EX2500 [32] with an interface to LXI [26]. National
Instruments offers a large family of slot 0 VXIpc embedded computers [33]. They occupy 1,
2 or 3 slots depending on features inside such as hard drives, CD-ROM, PCI slots, etc. Un-
fortunately, the embedded controllers are usually expensive and they are only used in specific
situations where external computers cannot be used. In addition, such embedded computers
dissipate a lot of power and emit electromagnetic noise in the VXI chassis.

The embedded computer usually hosts all software from layer 3 to 6, as presented in figure
3.1. In such cases the user application is built in a client-server architecture [34]. The client
application located on a remote computer communicates over LAN with a server application in
the VXI embedded computer. In VXI systems managed by simple controllers with computer
interfaces all software from layers 4 to 6 is located in a remote computer. Hence, there is no
need to build a distributed user application, however it is still possible, if required.

A VXI controller talks to register-based devices by reads and writes either to the configu-
ration or working registers. In case of the message-based devices the controller talks to them
using WSP commands.

3.3 Digital Interfaces

A digital interface provides a communication channel between the VXI system and control
software running on a user computer. The communication channel consists at least of one
or more hardware components and communication software in the computer. The hardware
components are cables, adapters, computer cards, and/or bus adapters. All VXI controllers
mentioned in the previous section can be physically connected through one of the front panel
interfaces. In case of embedded computers a specialized VXI bridge connects to the VXI bus
on one side and to the local processor bus on the other.

Every digital interface in a computer must include an associated interface driver so that it
is visible to the Operating System (OS) and the control software can access the hardware con-
nected to it. Digital interface drivers export Application Programming Interface (API) func-
tions which are used by the control software to establish communication with external devices
connected to the interface.

The user can write a program which communicates with a VXI system connected to a com-
puter by calling the interface driver API. This approach provides very fast communication with
the hardware, but is an inefficient programming style from the point of view of software re-
usability, especially for measurement and control systems. Almost every interface driver has
different API functions. If the user wants to switch his system from one interface, such as
GPIB, to another, such as Ethernet, the program must be almost completely rewritten because
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Figure 3.2: Communication with VXI Devices Through Various Digital Interfaces

API of the interface drivers is different. That situation is presented in figure 3.2. This method
of software development for measurement and control systems is now employed very rarely.

3.4 I/O Libraries

The access to a VXI system through various digital interfaces can be unified using I/O libraries.
From one side they handle the details of a particular OS driver for hardware interface; on
the other side, they provide a unified software interface to higher levels of the control software.
An example of interconnectivity is presented in figure 3.3. The same measurement and control
system is connected in one case through a GPIB interface, and in the other through Ethernet.
In both cases the same user program is used to operate the measurement and control system.

GPIB LAN
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Languages & ADE

3. Digital Interfaces

1. VXI Device
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Figure 3.3: Interconnectivity of VISA library
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The first I/O libraries were introduced by Hewlett-Packard and were named the Standard
Instrument Control Library (SICL). Currently, SICL is maintained by Agilent. SICL is a soft-
ware library which exports the API to higher software layers [35]. It is a bridge between digital
interface drivers and higher software layers. The library is portable to different OS such as
Windows and HP-UNIX, and was recently ported to Red Hat Linux by Test & Measurement
Systems Inc. [36]. SICL implemented many functions typical for several interfaces such as
GPIB, VXI, RS-232, LAN and USB. The Virtual Instrument System Architecture (VISA) is
a successor to SICL and is an industry standard approved by most measurement and control
systems manufacturers. VISA took advantage of all software implemented in SICL and it was
designed according to the VXIplug&play System Alliance specification [37].

The VISA/SICL library gives from the user point of view a high level of interconnectivity,
because the same measurement system may be connected to the computer through different
digital interfaces and the user program needn’t be changed. The same software interface is
provided by the SICL/VISA library for a user application regardless of the hardware interface.
The VISA library is recommended instead of SICL for the development of new software.

The software interface of the VISA library consists of several sets of universal communica-
tion functions. The variety of functions enables users to develop programs taking into account
speed, simplicity and operability. The Formatted I/O or Non-Formatted I/O functions usually
are used for message-based devices because they are used to transfer ASCII strings. The High-
level, Low-level and Memory I/O functions are used for register-based devices because they
provide simple read and write functions with varying levels of automation. The user can choose
between coding simplicity (High-level and Memory I/O functions) with slower execution, or
speed (Low-Level functions) with more complex coding. In addition, VISA/SICL provides
functions for event detection in a VXI system, such as interrupts, triggers, service requests,
VXI system failures, I/O operation completion, etc.

The VISA library is released in two versions VISA API and VISA COM. VISA API is
optimized for C/C++ language as well as for Visual Basic 6 and other software environments
which can call dynamic Windows libraries. VISA COM is an object version of the VISA
library which makes the library independent of programming language [38]. It utilizes the Mi-
crosoft Common Object Model (COM) . COM technology is an object-oriented representation
of the VISA API interface that is perfect for Visual Basic 6, Visual Basic .NET and C# as well
as different ADEs such as Agilent VEE Pro or NI LabVIEW. A handicap of VISA COM is
that it is a commercial solution based on the COM technology which was created and driven
by Microsoft, thus, it can only work under the Windows OS.

3.5 Drivers for VXI Devices

The I/O libraries provide interconnectivity for different digital interfaces. Using I/O libraries,
the connection to the VXI devices is established, but the communication protocol is not provided.
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The higher software levels must take care of communication protocol handling. This can be
done either in a user program or by a dedicated driver. The preferable method is a device driver.
The complex device programming at the working register level is encapsulated in a driver
provided by the vendor together with the device. The intention of the driver is to simplify
device control from user programs, especially for register-based devices. The device driver
releases the user from learning details of the device working registers. Different programming
approaches for device drivers enable various levels of hardware independence, interoperabil-
ity or interchangeability at the cost of additional complexity and moderate speed. Choosing
a good driver for a device is usually a trade-off between development comfort and speed of
execution.

Device drivers usually offer users either a programmatic or a graphical interface. There are
a number of device driver development techniques. The choice of technique strongly depends
on the VXI device type. In the case of register-based devices, the driver is a part of the control
software running on a remote or embedded computer. Message-based devices have the device
driver inside, see fig. 3.1. The control software then needs to exchange messages according to
the protocol implemented in the message-based devices.

Until now, none of the driver development techniques has become an international standard.
Due to common acceptance, some of them have become industry standards. The following
sections give a short overview of the most popular industry standards for the device driver
development.

3.5.1 VXIplug&play

The industrial VXIplug&play standard was primarily created for VXI devices, but it has also
been useful for other standards such as GPIB or PXI. VXIplug&play defined a naming conven-
tion, file formats, and software frameworks for device drivers. The main goal of VXIplug&play
was to eliminate problems with interoperability between devices from different vendors.

The VXIplug&play drivers are defined in two aspects. One is the external model which
defines how the drivers interface with other software layers. The other is the internal model

which defines the internal organization of the functional body of the driver [39].
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In the external model there are four interfaces, presented in figure 3.4. The primary one
is the VISA interface to the device. VXIplug&play must use VISA for communication with
the devices. At the other side VXIplug&play defines interfaces to the user application. One of
them is an interactive developer interface which is usually a graphical interface. For custom
programmed user applications, VXIplug&play offers a programmatic developer interface. In
this case the standard precisely defines the format of API functions which the driver exports to
the user application. The last interface of the driver model is an optional subroutine interface.
This is a mechanism through which the driver calls software libraries or programs that reside in
the OS. The external subroutines can optionally support the driver with advanced mathematical
calculation, storage access, etc.

The internal design model of the device driver specifies a manner of writing the functions
that form the driver. The functions inside the driver are divided into two groups. The first group
is called application functions. They are a collection of high-level functions which perform
complete measurement and test operations on the device. The second group is an intermediate
level set of functions named component functions which are responsible for initialization of and
closing communication with the device. There are also utility functions in this group which are
responsible for reset, self-test, error query, error message and revision query of the device. In
addition, this group may also contain developer specific functions.

3.5.2 IVI

The Interchangeable Virtual Instruments (IVI) standard is the next generation of a device driver
programming technique and it goes beyond the scope of the preceding VXIplug&play drivers.
The IVI standard was created to solve software rather than measurement issues. It defines soft-
ware layers inside the driver where measurement algorithms can be encapsulated for some of
the device classes [40]. The IVI device driver architecture isolates software components which
may change when the hardware is changed from the standard functionality for a particular de-
vice class. In theory, a message-based device, such as a SCPI programmed Digital Multi-Meter
(DMM) from one vendor, can be replaced by a register-based device, in this case DMM from
another vendor, and the operation should not require recompilation of the user software. Figure
3.5 presents the architecture of the IVI driver and illustrates the idea of interchangeability.

The IVI specific driver is responsible for direct communication with the device. It has
specialized code for control of the particular device. There are two different types of IVI specific

drivers. The IVI class-compliant specific driver conforms to one of the IVI device classes. It
exports an API that is called by the IVI class driver. Only API functions that can be used by
the IVI class driver can be included. This kind of driver is used with IVI class driver to provide
hardware interchangeability. The second type of IVI specific driver is the IVI custom specific

driver. It contains everything that is not included in the IVI class-compliant specific driver.
This driver usually contains a device model specific functionality, special diagnostic functions,
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extended functionality, etc. The API exported by this driver is called directly from the user
application and it is not involved in the hardware interchangeability.

Unlike SCPI, which defines device functional blocks and related SCPI trees, IVI class
drivers define various types of complete devices. The IVI class drivers have so-called base
class capabilities which make the driver code interchangeable among similar instruments from
various vendors. So far IVI has proposed eight instrument classes including oscilloscope, dig-
ital multimeter, function generator, DC power supply, switch, power meter, spectrum analyzer
and signal generator. Each of the device class drivers must have inherent capabilities and base
class capabilities. They also may have class extension capabilities and device specific capabili-
ties. The base functionality is the same for each device from a particular device class. Although
the devices in a class have identical base functionality, they usually differ in the advanced func-
tionality. Similar advanced functionality, offered by two devices from different vendors, is
usually controlled in a different way. Due to these differences the IVI class driver is not able to
cover all functionality of the devices from the same class and different vendors. The size of such
driver would be too big and the interchangeability assumption would be hard to meet. There-
fore, the IVI class drivers typically cover about 30% of the device functionality. The rest is
covered by the IVI class specific driver which is used in the same manner as the VXIplug&play
drivers. The aim of the IVI class driver is to guarantee to the user a minimum metrological
specification for the particular class.

3.5.3 Compiled SCPI and Interpreted SCPI

Programming of VXI devices by SCPI is not only restricted to the message-based devices.
The register-based devices can be also programmed by SCPI. But in such cases the SCPI
processor must be implemented in control software on the top of the device driver and be-
low the user application, because the register-based devices have no power for such complex
computation, see figure 3.1. The two most popular techniques supporting this method are
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Compiled SCPI (C-SCPI) and Interpreted SCPI (I-SCPI)[41].

In case of C-SCPI, the SCPI commands are embedded in ANSI C code written by the user.
Before the C code is compiled in a usual way, it is precompiled and all SCPI commands are
replaced by driver calls specific to the given device. At the linking stage of program building,
the appropriate driver functions are linked to the user program.

I-SCPI is a software library which is linked with the user program to parse SCPI com-
mands and format binary responses received from the register-based device. Unlike C-SCPI,
the I-SCPI parses the commands and formats responses in run-time that introduces an addi-
tional computation overhead and slows down the execution.

For both C-SCPI and I-SCPI an underlying device driver is required. When a SCPI com-
mand is parsed, an action must be performed in the device. This is a sequence of peeks and
pokes to the registers of the device.

Usage of such techniques makes from register-based devices so-called pseudo message-
based devices. This approach, although quite convenient for small devices, has some disadvan-
tages:

• compared to message-based devices, high volume traffic on VXI bus is created due to
transfer of a big amount of binary data,

• several instances of device drivers on the same computer (one instance per one physi-
cal device) put more computation load on it, so a stronger machine with more RAM is
required for the measurement system control,

• some actions cannot be done by the computer in parallel; one process has to wait until
another one is finished, which blocks the VXI bus.

The concept of pseudo message-based devices leads to a very centralized architecture for
the measurement system. Such an approach is not welcome in modern instrumentation.

3.5.4 SCPI Driver

As was described in section 3.1, the functionality of the VXI message-based devices is reflected
in SCPI trees. Unlike all techniques described before, the message-based device has the driver
on board, see figure 3.1. The SCPI processor inside the device receives messages and sends
responses in the IEEE 488.2 format. The local, on board firmware executes device driver
routines associated with the SCPI commands. The SCPI driver is an integral part of the device.
The driver isolates the device working registers from the control software. The control software
can only send SCPI messages in order to change device state, to perform an action, or to check
the device status. It is not possible to directly access the working registers in message-based
devices unless the device developer provides such a possibility with a direct memory access
mode [15].
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The control software may be relatively simple because only appropriate SCPI strings must
be formed and sent to the device. The strings of received responses must be converted into local
representations of data types in the control software. The user applications usually directly
communicate with the message-based devices by sending and receiving SCPI messages using
the VISA library, one of the options in figure 3.1. However, the VXIplug&play or IVI drivers
can also use SCPI for the message-based devices. The simplest VXIplug&play driver would
export to the user application an API which only processes SCPI commands and responses.
When the user application calls such an API function, the driver simply formulates a SCPI
string, which consists of a command string followed by optional command parameters passed
from the user application in the API function parameters. Then, the string is sent to the device
using the Formatted or Non-formatted I/O VISA functions.

An application using SCPI drivers in message-based devices distributes the intelligence
of a VXI system among several devices. Transfer of short SCPI messages instead of reads
and writes to the working registers reduces traffic on the VXI bus. The device intelligence
embedded in the SCPI driver and integrated with the device makes it easily interchangeable
and the user software becomes simpler and more portable across different computer platforms.

3.6 Programming Languages and ADE

Programming languages and Application Development Environment (ADE) are the top layer of
the hardware and software architecture of a VXI system. This is the layer where end-users build
their specific programs. They can use general purpose ADEs such as Microsoft Visual Studio
(where one can write programs in C/C++, Visual Basic or C#), or environments dedicated to
instrumentation such as LabVIEW, LabWindows or Agilent VEE Pro (where one can create
user applications in a graphical way).

There are no universal ADEs working under every OS, so the choice of the OS is not
a trivial task. It has a big impact on software tools which may be used for the particular
measurement system. The choice of software environment will have a significant impact on
development time, effort and cost of the measurement system, and later on maintenance of
the system. The situation on the market shows that leading vendors of measurement hardware
and software invest in the Windows OS. Therefore, most of the software tools and products
work under Windows. Other operating systems supported by manufacturers are UNIX like
HP-UNIX, VxWorks supported by National Instruments, and RedHat Linux by Test & Mea-
surement System Inc. [36].

The efforts put by software developers into the lower layers of hardware and software
architecture aim to minimize the user effort required for development of custom programs.
The lower level software can offer flexibility, interoperability, interchangeability and simplicity
of use for various devices in VXI systems.
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3.7 Register- versus Message-based Devices

In general there are two methods of device control, one is the use of a device driver, the other
one is direct I/O [42]. Using a device driver (with or without C-SCPI/I-SCPI) is more natural
for register-based devices. Direct I/O is more natural for message-based devices due to SCPI
[43]. Regardless of the software technique and device type, SCPI is still the most popular
VXI device control method [42], [44]. A system developer needs to take into account two
major aspects in choosing between the direct I/O or drivers. The first aspect is a trade-off
between speed of execution which is faster with direct I/O, and development time, which is
faster with the device drivers. The second is access to device functionality. Most drivers offered
together with commercially available devices do not allow full access to their functionality.
VXIplug&play and IVI drivers usually give access to the basic and most used functionality of
a device. The full functionality is only available by the direct I/O to the device registers which is
usually complicated and requires time consuming software development. The combination of
direct I/O with VXIplug&play or IVI drivers gives the user access to 100 percent of the device
functionality. The message-based device functionality is always fully covered by SCPI trees.

Nevertheless, users don’t have to choose between device drivers and direct I/O. It is possible
to build custom software that utilizes both at the same time. The user program can access basic
functionality using the device driver, and the advanced features using direct I/O. The merits and
drawbacks of both are listed in table 3.1.

IVI and SCPI are not competitors. If an off-the-shelf device is of the register-based type,
it is recommended that the entire device driver should be written according to the IVI speci-
fication. When the device is of the message-based type and understands SCPI, an IVI driver
can still be written, but the IVI Specific Driver should use SCPI for programming the device.
If the IVI driver is not used for many applications or many devices, it is easier and faster to
write a program based on SCPI as was demonstrated in [45]. It is worth writing an IVI driver
for a large series of register-based devices. For a small number of message-based devices it is
easier and faster to use SCPI. Most IVI-COM drivers feature SCPI pass-through methods that
allow the user to send native device commands in an orderly manner through the IVI driver
[46].

This dissertation is devoted to message-based devices programmed by SCPI. The presented
application uses direct I/O for device programming.
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Table 3.1: Device Drivers vs. Direct I/O

Device Drivers Direct I/O

Recommended for register-based devices Recommended for message-based de-
vices

Content of functions is hidden in the de-
vices driver and sometimes it is not clear
what is inside

Self explanatory SCPI commands for
message-based devices. Very compli-
cated for register-based devices

Faster development of user programs Faster execution of programs

A part of the device functionality is usu-
ally covered by the driver. The user must
write custom code for accessing advanced
features of device

100 percent functionality accessed by
SCPI

Proprietary drivers is not alterable. De-
vice driver vendors don’t provide source
code for device drivers

Fully customizable code

Device status tracking and error handling
provided - defined as an obligatory func-
tionality in VXIplug&play and IVI

Device status tracking and error handling
needs to be programmed

Platform dependent software Independent of software platform

Drivers can utilize SCPI for device con-
trol

Drivers for register-based devices may
be part of SCPI based driver (I-SCPI,
C-SCPI)
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4

Thesis

4.1 VXI Measurement and Control System Development
Issues

A typical commercial VXI device is encapsulated in one module with complete backplane
and front panel interfaces. Such device is provided with a dedicated driver, documentation,
tutorials, etc. Its integration into VXI system is costly but easy to do. The situation becomes
much more difficult when the developer of a VXI system must simultaneously integrate a piece
of electronics specific to his needs. Nowadays, there are two major reasons for the difficulty of
the efficient setup and support of specific VXI systems:

(a) the lack of hardware designers who know all necessary details of standard interfaces,

(b) the cost of time consuming software development.

Reason (a) is addressed to device developers. In order to build a device that may be used
in a VXI system, a huge number of rules from several detailed specifications must be fulfilled.
This work overhead, forced by obligatory standards, plays a significant role in the device de-
velopment process. In the case of simple electronics, more time is required for development of
the VXI interface than for development of the functional part. The VXI interface implemen-
tation also requires from the device developers precise knowledge of many details of the VXI
specification. This means several weeks spent on studies, which quickly converts into money.

The birth and boom of powerful FPGA chips gave impetus to further evolution of modular
devices for measurement and control. The advanced technology has come to the point where
device components are encapsulated in specific integrated circuits which become guarded se-
crets of the companies. In some cases this makes the life of device developers easier. Many
chips available on the market provide complete functionality for different interfaces such as
RS-232, VME, IEEE 488.1 or VXI (register-based devices) [47]. Transformation of user elec-
tronics into register-based devices is relatively easy, into message-based devices significantly
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more complicated. An appropriate interface circuit must provide a much broader functionality
based on the IEEE 488.2, VXI standards, and SCPI specification.

Reason (b) is addressed to developers and users of VXI systems. Most devices in VXI
systems can be controlled only by software. The integration of a brand-new device into a VXI
system requires highly sophisticated software, either provided by the manufacturer or devel-
oped by the user. The software from manufacturer often doesn’t meet the needs of a specific
user. The user must then rewrite or adapt the device driver for his system or — as is the most
common situation — write completely new software from the beginning, which costs an enor-
mous amount of time.

4.1.1 Problems with Development of Message-based Devices

Reason (b) is not an issue for the message-based devices programmed by SCPI. Such a de-
vice is described by self-explanatory SCPI trees which cover 100% of the device functionality.
The user software only needs to send and receive textual messages.

The simplicity of the message-based device programming was achieved by increased com-
plexity of its interface — reason (a) becomes an important issue. In this case the developer
of a device encounters difficulties during implementation of a VXI interface compliant with
IEEE 488.2 and using SCPI messages. Figure 4.1 presents a general block diagram of a VXI
message-based device. For comparison, a typical register-based device contains only a VXI
interface with configuration registers, and a user device. The message-based device compliant
with IEEE 488.2 contains all blocks presented in the figure. The VXI interface contains config-
uration and communication registers as well as additional options for IEEE 488.2 compliance.
Every block in the figure includes comments on which standard or specification is defined each
functional block. As one can see some blocks are a mixture of two standards. While reading
the documentation, dependencies between standards are sometimes not so clear. The specifi-
cations define many rules and some of them generate ambiguous interpretations which must
be solved by the developer. In addition, there are no guidelines or publications which present
practical ideas of VXI message-based interface implementation.

It is also important to mention that new block Trigger Control appeared in figure 4.1. This
block differentiates the message-based from register-based devices. Register-based devices are
allowed to use trigger lines available in the VXI backplane in a completely device dependent
manner. In message-based devices the behavior of Trigger Control is defined in the SCPI
specification as a Trigger Model. The Trigger Model determines, in a unique manner, reaction
of message-based devices on trigger signals. One can find a more detailed description in [43].

The complexity of the VXI, IEEE 488.2 standards and SCPI specification is very high and
the successful implementation of all of them consumes a lot of time. Realization of such devices
in a small laboratory environment is almost impossible without prefabricated components. Al-
though the required standards are in the public domain and are available for developers, the time
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Figure 4.1: Complexity of VXI Message-based Device

required for their implementation is unreasonable. The details of prefabricated, commercial
message-based tools are guarded by the device manufacturers and their cost is relatively high.
The cost of commercial, ready to use message-based devices is usually three times higher than
that of register-based counterparts with similar functionality.

The solution for developers of VXI message-based devices in a laboratory environment
would be a tool that offers a complete VXI interface with a configurable SCPI driver. The de-
veloper would only need to implement the functionality specific for his electronics.

4.1.2 Existing Commercial Solutions

Up to now, four commercial products have appeared on the market to support development of
the message-based devices. The one from Interface Technology Inc. (named BB9250) is no
longer available [48] and therefore it is not considered here. Table 4.1 contains a comparison
of the features of the three available solutions.

VXI Technology has released a series of VXI Modular Instrumentation Platform (VMIP)
products. There is a single-slot base unit, VM9000, which is a universal C-size breadboard
for mezzanine cards also manufactured by VXI Technology [49]. Among several customized
mezzanine modules, there is one VM7000 card that is a prototyping module for the message-
based devices development [50]. Beside several advantages listed in the table, this card has
several limitations. It has a fixed and limited list of Common Commands and SCPI com-
mands. The command list contains obligatory commands and several SCPI commands for con-
figuration of the VM7000 card. Only two commands, :PEEK and :POKE, give access from
the VM7000 to user device dependent registers. There is no possibility to add specific SCPI
commands; the SCPI parser is able to interpret only pre-defined commands. Using the :PEEK
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Table 4.1: Comparison of tools for message-based devices development

Feature Racal Instruments
7064M

VXI Technology
VM7000 + VM9000

ICS Electronics
5526

Type message-based servant message-based servant message-based servant
Message
Capability

Only IEEE 488.2, no
extension

Fixed list of IEEE
488.2 and SCPI
commands, no
extension

Pre-defined IEEE 488.2
and SCPI commands,
extensions possible

Shared
Memory

A24/D16, 64kB no Access from VXI bus to
local memory

LBUS yes yes no
Triggers TTLTRG TTLTRG TTLTRG
Master yes no no
Interrupts Programmable

Interrupter, Event and
Response Generator

Static requester on
IRQ5

Static requester (IRQ
line not specified)

User
Interface

Twelve 8-bit TTL
buffers - 96 I/O lines or
local bus

Only 32 I/O lines,
SCSI, power supply
lines

32 I/O lines, expan-
sion bus (only 64 reg-
isters), serial interface,
TTLTRG lines

User
Commands

no no yes

and :POKE commands effectively gives operation at register level — the same as for register-
based devices. This solution offers a very small number of the features important for the devel-
opment of message-based devices.

Racal Instruments has manufactured a message-based prototyping module, series 7064M
[51]. This is a C-size PCB with a mezzanine card which serves as a VXI message-based
interface. The interface card contains a Motorola 68000 CPU for management. The interface
to the user electronics can be either 96 General Purpose I/O (GPIO) lines or the local bus
of the 68000. There is a set of C commands for configuration of the interface card and for
access to the user interface. It implements only a limited and fixed list of IEEE 488.2 Common
Commands. There is no SCPI parser inside and none of SCPI commands is implemented. It is
not possible to add device-specific SCPI commands.

The most advanced tool for the development of message-based devices is produced by ICS
Electronics. The product is named VXI-5526 [52]. It is built as a small electronic card with
a VXI interface at one side and a user device interface at the other side. It contains a SCPI parser
which runs on an Intel 386EX processor. The datasheet of this tool mentions that a firmware
development kit can be used for the definition of specific SCPI commands. Direct contact with
the company resulted in the information that ICS Electronics is not able to sell the development
kit, but can implement SCPI trees for customers. Effectively, the user has no chance to develop

42



device-specific SCPI commands by himself.

4.1.3 Thesis Motivation

This work is motivated by the lack of appropriate commercially available tools which could
help in the development of message-based devices. The solutions presented in the preceding
section don’t offer the capability of defining device-specific SCPI commands, which is cru-
cial for user applications. The definition of SCPI trees implies a capability for device driver
customization, which is also missing. It is also very important that the device developer can
iteratively improve his project by changing SCPI command definitions and the device driver in
the laboratory. Ordering a SCPI driver from a company is a very inefficient method for iterative
development.

Besides the limited functionality offered by manufacturers, the price of such tools is also
a big issue for small laboratories.

4.2 Thesis Statement

Having in mind all these problems and needs, the thesis was formulated as follows:

It is possible in a small laboratory environment to design an effective tool that is
flexible enough to integrate some specific electronics into a VXI/SCPI system as a message-
based device.

4.2.1 Thesis Goals

The main goal of this thesis is to build an electronic tool which provides a configurable VXI
interface card based on definition of device-specific SCPI commands as well as an editable
device driver written in a commonly used language.

The tool will be referred to in the further chapters of this work as VXI Message-based Tool
(VXI-MBT).

The second goal is to present an example of a VXI-MBT application that demonstrates tool
capabilities and is a practical guide on how to use it.

4.2.2 Requirements for the Thesis Goals

In order to realize the goals, top level requirements for VXI-MBT have been formulated:

1. Flexibility and configurability that allow adaptation of specific user electronics. The fol-
lowing derived requirements must be fulfilled:

(a) flexible and configurable user device interface,
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(b) configurable SCPI trees specific to the user device functionality,

(c) configurable user device driver associated with the defined SCPI trees,

(d) configurable VXI interface.

2. Reduced time for user device development. VXI-MBT should minimize the device devel-
oper engagement in the implementation of standard functionality. The developer engage-
ment should be focused only on implementation of specific functionality of the adapted
electronics. The following derived requirements have to be met:

(a) VXI-MBT shall provide the obligatory functionality that is defined by the standards
and shall exist in every message-based device,

(b) a frame for a SCPI processor and a device driver shall be implemented in VXI-MBT,

(c) a user-friendly graphical configuration environment shall be provided — a devel-
oper shouldn’t need to learn the format of the configuration files.

3. VXI-MBT should also meet some non-functional requirements in order to ensure usabil-
ity over many years. These requirements may help during the development, commission-
ing and maintenance of a user devices:

(a) minimize the physical space required for VXI-MBT and maximize space for the user
device in a VXI module,

(b) upgradeability and maintainability — it shall provide a repository for user projects
that helps in the long term maintenance of the user device,

(c) since it is assumed that the development of the user device is an iterative process
spanning a period of time, an easy upgrade path must be provided.
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5

Development of User Devices Based on the
Tool Model

Having in mind all of the obligatory requirements listed in the previous chapter, a general
model of VXI-MBT was proposed, as presented in this chapter. The proposed model implies
a development methodology for a user device adapted to VXI standard using VXI-MBT.

5.1 VXI, IEEE 488.2 standards and SCPI in VXI Message-
based Devices

This section describes selected features of IEEE 488.2, VXI and SCPI. This information is
important for understanding the model and implementation of VXI-MBT. This section also
shows in more details the complexity of VXI message-based devices compatible with IEEE
488.2.

5.1.1 VXI Interface for Message-based Devices

Each device in a VXI chassis has a unique address within a 16-bit address space, called the log-
ical address. This address, similar to GPIB talker and listener addresses, is 8 bits wide and
allows for installation of 256 devices in one VXI system. The addresses on GPIB are 5 bits
wide but the basic addressing mode in VXI system is A16. In order to maintain compatibility
between GPIB and VXI, the 5-bit GPIB address is converted into a 16-bit VXI address. Bits 15
and 14 of VXI address are always ’1’, and the GPIB address is mapped into bits from 13 down
to 9. Bits from 8 down to 6 are always ’0’. That’s why, the GPIB address mulplied by 8 gives
a logical address on the VXI bus. The remaining bits from 5 down to 1 are used for addressing
of VXI configuration and communication registers.

The set of obligatory configuration registers — see appendix D.9 — contains basic param-
eters of a device such as type, manufacturer code, device model, addressing modes, address
space required, interrupt requester and handler lines, etc. When a VXI system is initialized,
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the controller scans A16/D16 address space looking for installed devices. Based on the con-
figuration register contents of each device, the resource manager, which resides in the VXI
controller, configures memory space for different addressing modes on VXI bus, assigns inter-
rupts lines, enables interrupt handlers, etc.

Configuration Register

Device
Specific

Protocols
Communication Registers

Shared
Memory
Protocol

Word Serial Protocol

Device
Specific

Protocols

488.2 Syntax

488-VXIbus

Device
Specific

Protocols (SCPI)
Device
Specific

Protocols

Device Dependent Working Register

VXIbus

Figure 5.1: VXIbus Communication Layers

The message-based devices are programmed by sending and receiving textual messages,
which must be interpreted and formatted in the device. The stack of communication layers
in message-based devices is presented on the far right side of figure 5.1. The message-based
devices contain, in addition to configuration registers, obligatory communication registers, see
appendix D.9. Communication registers are used to implement various communication proto-
cols. Unlike register-based devices where simple reads and writes of registers are performed,
in the message-based devices the messages are sent on the VXI bus byte by byte to the same
communication register, named DataLow. There is a write monitor on the DataLow register,
and each message sent through the register is automatically executed by the device. The format
of the messages is determined by the protocol currently applied for the communication.

Word Serial Protocol (WSP) is the only obligatory communication protocol for all message-
based devices, see [15] section C.3.3.1. The 16-bit command is sent to a device by writing it to
the DataLow register. The optional response to a command is also placed in DataLow. Read

Ready and Write Ready bits from Response register are used to control the transmission of
words. VXI defines several commands within WSP. All of them are used for the configuration
of advanced functionality of message-based devices, see [15] section E.1. There are also other
optional communication protocols used for the message transfer.

Commander/Servant Hierarchy. In VME terminology there are two terms, Master and
Slave. A master can initiate transmission while a slave can only respond. Each VME device
must have slave capability but not all need have master capability. This is also true for the com-
munication in a VXI system. Here, two additional concepts are incorporated: commander and
servant. These two terms, inherent for VXI systems, are used to determine the logical hierarchy
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among devices. The hierarchy in a VXI system is organized as a reversed tree, and looks like
a computer file system. There is one top level commander which usually plays a role of the re-
source manager. It is physically located in the slot 0 and can be interpreted as a root of the tree.
Several commanders and servants may exist in one VXI system. Servants are always leaves.
A non-root commander may exist as a leaf or as a node with other subordinated commanders

and servants. Any VXI device may have only one direct commander, except the top-level
commander that has no commander above.

The commander/servant hierarchy is particularly meaningful for message-based devices
because the communication between them requires WSP protocol. At the beginning, when
a VXI system starts, commanders use WSP to configure their direct servants. The Comman-

der/servant hierarchy is useful when reorganization of a VXI system is needed. A part of
the well configured, existing system with commander/servant hierarchy may be used in a new
system without reconfiguration.

Interrupts and Asynchronous Events. Most events in the VXI system are asynchronous.
When a certain event occurs, another part of the system must be notified. There are several
methods for notification of event occurrence. The VXI standard takes advantage of the VME
bus interrupt lines. During the initialization process of a VXI system each commander checks
the capabilities of its servants. The commander enables interrupt requesters in the servants and
assigns interrupt lines which are monitored by an interrupt handler located in the commander.
Commanders which contain an interrupt handler must also have VME master capability in order
to perform an interrupt acknowledge cycle. The commander, notified by interrupt, checks for
the reason of the service request by reading, during the interrupt acknowledge cycle, the status
word from the servant. The interrupt handler routine is completely device dependent and its
behavior is not defined in the VXI standard.

A servant may also report its status or generate events by sending an appropriate status
word to its commander. This mechanism is called by the VXI standard ’event and signal
generation’. In such case the servant must have VME master capability. The commander has
a special signal register in the range of the communication registers. When an event occurs
the servant writes a 16-bit status word to its commanders signal register. This special word
contains the sender address and the event code. The commander has a write monitor located
on the signal register which immediately triggers the event handler. The advantage of event
generation is that commanders don’t need to have interrupt handler capability. Servants may
implement both an interrupt requester and an event generator.

Triggers. The VXI standard extends VME bus by employing outer rows of the P2 con-
nector. Ten pins of the additional 64 are used for the trigger lines. Triggering is an essential
mechanism in measurement systems as a hardware method for device synchronization. In
many applications, measurement devices must be synchronized by fast, non-delayed, global
signal in order to acquire measurement data at a precise time. Such a possibility is provided
by eight TTLTRG and two ECLTRG lines in connector P2. All of them may be used by every

47



device in the VXI system. Minimum assertion time for TTL and ECL triggers is 30ns and
8ns respectively. VXI trigger lines are general purpose lines and their usage is device depen-
dent. Nevertheless VXI defines three optional protocols such as synchronous, asynchronous
and start/stop which may be used for the device synchronization, see [15] section B.6.2.3.

In addition to electrical trigger lines, the VXI standard defines a WSP command for trig-
gering devices based on a software synchronization method. The Trigger command in VXI
devices is analogous to the GET command in the IEEE 488 standard. VXI devices which con-
form to the IEEE standard should implement the WSP Trigger command. The GET command
doesn’t guarantee precise synchronization; it is implemented rather for the compatibility with
IEEE 488.2.

5.1.2 Conformance of VXI devices to IEEE 488.2 and Message Exchange
Control

Conformance of VXI Device Interface to IEEE 488. The VXI standard also defines how to
implement a VXI device compatible with the IEEE 488.2 standard. The IEEE 488.2 standard is
supplementary to IEEE 488.1, but IEEE 488.1 defines a physical interface which doesn’t exist
in VXI systems. Nevertheless, the VXI standard defines rules which allow controlling VXI
devices as if they were IEEE 488.1 devices. This goal was accomplished by implementation of
special commands in WSP, thus, only VXI message-based devices may conform to IEEE 488.1.
The VXI standard defines two WSP commands: Byte Available and Byte Request, which are
used to exchange the textual messages, the format of which conforms to IEEE 488.2, see figure
5.1. An IEEE 488.2 command consists of strings of ASCII characters, which must be sent seri-
ally to the device. The Byte Available and Byte Request commands constitute a protocol called
Word Serial Data Transfer Protocol (WSDTP), see [15] section C.3.3.3. The message exchange
traffic is controlled by DIR and DOR bits in the Response register. Other WSP commands such
as Clear, Trigger, Set Lock, Clear Lock, Read STB correspond to IEEE 488.1 control actions
such as IEEE 488.1 interface management lines IFC, REN, SRQ, and IEEE 488.1 multiple line
interface command GET and RQS, see [15] chapter D.1.

Unlike IEEE 488.1 the VXI system can have only one listener. The addressing of listeners
is also slightly different. The IEEE 488.1 primary address is translated into a VXI base address
multiplied by 8 as was explained in the previous section. The VXI device should implement in
a IEEE 488.2 compatible fashion the IEEE 488.1 functions: SH1, AH1, T6, L4, SR1, DC1 and
DT1. The VXI specification precisely describes how these functions have to be implemented
in VXI devices, see [15] chapter D.2.

Message Exchange Control is a special finite state machine (FSM) implementing Message
Exchange Protocol. Both are defined in the IEEE 488.2 standard. The Message Exchange
Protocol describes how the device has to behave when it receives the messages and prepares
the responses. IEEE 488.2 precisely describes the Message Exchange Control FSM, but there
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are still some unclear situations which may lead to device malfunctions. Implementation con-
siderations concerning such problems are described in [53]. The block diagram of Message
Exchange Control and a short description is presented in appendix C.

The IEEE 488.2 standard also defines a set of Status Registers for device status reporting.
These registers are described in appendix D.11, figure D.8. Together with the set of Common
Commands the IEEE 488.2 Status Registers provide a unified method for reporting device sta-
tus to the control software. The Status Registers must be also implemented in a message-based
device compatible with IEEE 488.2.

5.1.3 IEEE 488.2 Syntax and SCPI in VXI Message-based Devices

The SCPI specification defines a set of commands for programming devices in measurement
and control systems [16]. SCPI is only a set of commands; it is not a language as it doesn’t
implement any conditional instructions. SCPI is an accepted implementation of the IEEE 488.2
syntax that goes beyond IEEE 488.2 to address a wide variety of device functions in a standard
manner. SCPI is not dependent on the hardware part of IEEE 488.x. so it may be used with ar-
bitrary interfaces such as RS-232, VXI, Ethernet, etc. SCPI provides a consistent programming
environment for instrument control and data usage. This software environment consistency is
achieved by the use of defined messages, responses, and data formats regardless of manufac-
turer [54]. The SCPI specification defines a standard model of a device which covers all func-
tional parts of it. The device model is described in appendix B. The use of SCPI significantly
decreases the time for the development of user programs for measurement and control systems
because it is independent of programming language and operating system [55].

The SCPI is an open industry standard. Besides the thousands of commands defined in
the SCPI specification, the developer may add custom commands which reflect a specific func-
tionality of his device.

The conformance to IEEE 488.2 is the last layer in the communication stack of VXI message-
based devices, see again figure 5.1. Each communication protocol which is implemented on
top of IEEE 488.2 is optional with respect to the VXI standard. Nevertheless, SCPI is used as
a natural choice for device programming. The IEEE 488.2 standard defines syntax which is
a basis for the SCPI specification. Details of SCPI nomenclature based on IEEE 488.2 syntax
is described in appendix B. Each device which uses SCPI must implement thirteen IEEE 488.2
Common Commands (appendix D.1) and eleven SCPI commands [17].

The SCPI specification significantly extends the status reporting system defined by IEEE
488.2. An additional set of the status registers must be added to the message-based devices
compliant with SCPI. These registers are described in appendix D.11, figure D.9.
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5.2 The VXI-MBT Model

Taking into consideration the high complexity of VXI message-based devices compatible with
the IEEE 488.2 standard and all requirements defined in section 4.2, a VXI-MBT model was
proposed. The proposed model is presented in figure 5.2. It meets all functional requirements
and inherits the model of VXI message-based devices presented in figure 4.1, with significant
extensions important for the thesis. The following paragraphs briefly characterize the features
of the model.
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Figure 5.2: The Model of VXI-MBT

There are three distinct components presented in the figure: VXI-IC, VXI-SDK and a user
device. VXI-MBT consists of two parts: the VXI-Interface Card (VXI-IC) — the gray box on
the left side, and VXI-Software Development Kit (VXI-SDK) — the gray box on the right side.
VXI-IC together with the user device — the black box — constitute a VXI device — a physical
card cage. VXI-SDK is a software package that resides somewhere in a developer computer.

VXI-IC is a combination of hardware and firmware which provides a VXI message-based
interface on one side and a user device connector at the other side. Logically, VXI-IC provides
functionality related to the VXI interface and SCPI driver. VXI-IC is intended to be a ready to
use electronic card with embedded firmware that offers to the device developer a flexible VXI
message-based interface.
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VXI-SDK — since VXI-IC has many configurable capabilities, an appropriate tool for con-
figuration must be provided. VXI-SDK is a software package installed on a PC where device
developer can: configure parameters of VXI-IC, define device-specific SCPI commands, write
and edit source code of the device driver, and load it to VXI-IC. VXI-SDK should have a user
friendly Graphical User Interface (GUI) for setting up all parameters. The developer doesn’t
have to learn the format of configuration files because all of them should be generated automat-
ically from VXI-SDK. The dashed lines in figure 5.2 indicate such possibilities. Additionally,
VXI-SDK should offer direct communication with VXI-IC through the VXI bus in order to
track the state of VXI-IC and the user device for debugging purposes. All these features of
VXI-SDK help to fulfill the derived requirement from point 2(c) in section 4.2.2.

A user device is a specific piece of electronics with functionality defined by the VXI device
designer. Physically, the user hardware may be of any shape which fits into a C size VXI
module. The user device must contain only the complementary connector that fits to the VXI-IC
connector. If not, a special adapter should be attached. The user device can make use of a front
panel for specific interfaces to other parts of a system. Logically, VXI-IC controls the user
device by exchanging device dependent binary data. The important point of the concept is that
the data exchange protocol used between the user device and VXI-IC is configurable. If the user
electronics is simple, i.e. no local intelligence is present, the VXI-IC connector should provide
general purpose I/O lines for the control and status report. However, the limited number of I/O
lines may be an issue in some cases. If the user device contains more sophisticated electronics,
a custom local bus may be implemented for communication, and the number of I/O lines is not
an issue. The choice of communication protocol is up to the device developer and should be
easily reconfigurable for the various applications. The configurability of user device interface
fulfills requirement 1(a) in section 4.2.2.

The model of VXI-MBT also defines physical and logical separation between VXI-IC and
the user device. The intention is to distinguish between the functionality provided by VXI-IC
from things which must be done by the device developer.

Physically, as it has been already stated, VXI-MBT and a user device are separated by
the device connector.

Logically, one can distinguish three parts that are exhibited in figure 5.2:

• The VXI-IC fixed part — it contains the obligatory functionality of every VXI message-
based device and is always included in VXI-IC. The device developer can’t modify this
part. The fixed functionality is visible in figure 5.2 on the left side of VXI-IC. Func-
tionality of the fixed part significantly reduces the development time (requirement 2(a)
in section 4.2.2), because a large portion of the VXI message-based device functional-
ity is already provided by VXI-IC, such as the VXI interface, the SCPI processor, and
the VXI-IC driver for the obligatory commands.
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• The VXI-IC configurable part — this is a hardware and software frame for the imple-
mentation of functionality related to the user device (requirement 2(b) in section 4.2.2).
The VXI-IC functionality such as trigger control, device-specific SCPI command inter-
pretation, device driver and user interface can be configured by the device developer
using VXI-SDK. The configurability of these mechanisms is crucial for the development
of SCPI drivers for as yet unknown user devices. The configurable elements are located
on the right side of VXI-IC in figure 5.2.

• user device — as it has been already mentioned, this is a user dependent part. The devel-
oper is responsible for its functionality. No functional requirements are specified in this
thesis for the user device.

The components of VXI-IC are briefly characterized here with clear classification of the fixed
and configurable features:

The VXI Interface is a part of VXI-IC which is responsible for any interaction with the VXI
bus. It must be a message-based servant containing configuration and communication registers.
The obligatory WSP protocol must include obligatory WSP commands and optional commands
for IEEE 488 compliance. It must also include the Byte Request and Byte Available commands
for WSDTP realization required for the SCPI message exchange protocol. Besides the oblig-
atory functions, the VXI interface must support the optional functionality of the VXI bus so
that the user device has the possibility of using it, i.e. interrupt requester, VME master, trig-
ger lines, VXI LBUS, 10 MHz clock, and voltages. These features fulfill requirement 1(d) in
section 4.2.2.

The SCPI Driver is the local artificial intelligence of message-based devices that performs
three actions:

• Parsing and formatting Common Commands and SCPI commands according to IEEE
488.2 syntax. The parser determines if the incoming command conforms to IEEE 488.2
syntax; if not it is rejected and an error code is generated. The formatter creates response
messages by converting returned data from the local processor representation into stan-
dardized ASCII strings. The SCPI parser and formatter are fixed. The parser behavior is
strictly defined in the IEEE 488.2 standard and it can parse any SCPI compliant command
defined by the device developer.

• Interpreting the parsed commands. Even if the SCPI command was parsed successfully,
it is not necessarily a command of the particular device. If the command is executable
by the device, the interpreter returns its code and parameter list. The parser, formatter
and interpreter are enclosed in one component in figure 5.2. The interpreter is par-
tially configurable. The fixed part of the interpreter contains a list of obligatory Common
Commands and SCPI commands that are executable by VXI-IC. All other SCPI com-
mands are defined by the device developer and definition of them must be generated in
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VXI-SDK. The configurable part of the interpreter together with the graphical definition
of device-specific SCPI trees fulfill requirement 1(c) in section 4.2.2.

• Executing commands returned from interpreter. The commands are executed by the VXI-IC
driver or by the device driver. The VXI-IC driver executes commands and queries related
only to the VXI-IC functionality. The VXI-IC driver doesn’t interact with the user device
and its presence is not required. The VXI-IC driver executes commands from the fixed
list of the SCPI interpreter. It is an integral part of VXI-IC and cannot be modified by
the device developer. The functionality implemented in the VXI-IC driver is provided to
every user device application. Unlike the VXI-IC driver, the device driver is a fully cus-
tomized software object. It is empty by default. The device driver interacts with the user
device and its behavior is defined by the developer. The configurable device driver fulfills
requirement 1(b) in section 4.2.2.

5.3 New Development Methodology Aspects of VXI Message-
based Devices

The presented model of VXI-MBT implies a new methodology of VXI message-based devices
development. Figure 5.3 presents an algorithm of the development process which would be
the most general use case of VXI-MBT. The description of the development algorithm includes
statements with the word ’shall’ written in italic. These sentences are simultaneously the spec-
ification of VXI-MBT. Every specification statement is followed by a short justification.

At the beginning of the development process it is assumed that the user electronics is ready
to be adapted.

In the first step the VXI-IC and user device must be coupled mechanically and electrically.
The device interface described in the VXI-MBT model is used for that.

In next step, the developer shall create in VXI-SDK a new project. This project will contain
all files necessary for VXI-IC configuration created during the development process. Grouping
files in projects helps with their management. On creating a new project, VXI-SDK shall

automatically generate VXI-IC default configuration files. The developer doesn’t need to create
all these files by hand and to learn their format.

Based on the default configuration, the developer shall alter settings of VXI-IC accord-
ing to his needs using VXI-SDK. An appropriate GUI in VXI-SDK helps to keep control of
the VXI-IC configuration — only allowed combinations of configuration options can be chosen
by the user. The developer can set configuration options for the VXI interface and/or trigger
control. The intention of the VXI interface configuration is to make VXI-IC visible in the VXI
system. The trigger control is configured in order to enable propagation of trigger signals from
the VXI backplane to the user device and/or to VXI-IC if necessary.

In the next step, the configuration of the device interface shall be performed using VXI-SDK.
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Figure 5.3: Development algorithm for new VXI Devices using VXI-MBT

Starting from the possible configuration options of the device interface allowed by VXI-SDK,
the developer should be able to assure electrical compatibility between VXI-IC and the user
device.

When the device interface is configured, it’s time to establish communication between
VXI-IC and the user device. A method of communication verification shall be provided in
VXI-SDK. No additional tools are required for testing the communication with the user device.
Therefore, the VXI-SDK software block in figure 5.2 is connected to the VXI bus. VXI-SDK
shall communicate with VXI-IC over the VXI bus using the VISA library, as described in sec-
tion 3.4, is the most popular mechanism for communication with VXI devices. In addition,
this feature enables the possibility of tracking the VXI-IC state at every development stage.

When communication is established, the device-specific SCPI commands can be defined.
VXI-SDK shall provide a user friendly, graphical interface for configuration of SCPI trees. In
order to facilitate the definition process for the developer, the VXI-SDK software can check
the correctness of new SCPI commands, and forbid violation of the specification. VXI-SDK
shall export the SCPI command definition in a format understandable by the SCPI processor

54



in VXI-IC. The format of this file needs only to be understandable by the SCPI processor and
the developer must not change this file.

The complementary process to SCPI message definition is writing the routines of the device
driver which are associated with individual messages. The VXI-SDK shall provide a text editor
in which the developer can write source code for the particular routines. No additional text
editor is required — the routines are automatically assigned to particular SCPI commands by
VXI-SDK. The routines shall be written in ANSI C language which is the most common
language for writing device drivers. The VXI-SDK shall use a standard compiler for the device
driver compilation which is available for free in the Internet. The output file of the compilation
is an executable program for VXI-IC processor.

When the definition of SCPI messages is completed and an appropriate device driver has
been written, the configuration files generated in the preceding steps must be transferred to
VXI-IC. VXI-SDK shall provide a mechanism for file transfer to VXI-IC through the VXI bus.
The direct file transfer from VXI-SDK to VXI-IC will speed up the configuration process of
VXI-IC and the overall development process. It also helps to keep control of file versions.

After successful transfer of configuration files to VXI-IC it is time to verify the functionality
of new SCPI commands and the device driver. In this step, the developer can already check how
the driver routines in VXI-IC work with the user device. The VXI-IC shall provide a debug
interface so that debug messages can be printed out by device driver routines. The debug
interface significantly accelerates searching for errors.

At this point the developer can decide whether the developed device works according to
his requirements. If the device doesn’t behave as expected, most probably the definition of
the SCPI messages or/and the driver routines need to be improved. After necessary modifica-
tions, the new configuration files can be loaded to VXI-IC and again tested. These steps are
done in a loop as an interactive process until the SCPI driver operates as it should.

After the iterative process is finished, only one more step should be taken. All project files
generated in VXI-SDK during development process shall be saved on the hard drive. It shall

also be possible to save the complete project at any stage of the development process. This
option provides the possibility of resuming the development process at any time. It is also
important for future upgradability and maintainability.

5.4 Benefits from VXI-MBT

The presented model of VXI-MBT and the proposed methodology of VXI message-based de-
vice development using VXI-MBT provide several practical benefits:

• The separation of VXI-MBT and user device functionality is clearly defined. The model
determines which functionality is provided by VXI-MBT and what is specific to the user
device.
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• The systematic approach to the model of VXI-IC clearly defines which part is fixed and
what can be configured.

• The model automatically identifies configurable data which must be generated from
the VXI-SDK and simultaneously determines the functionality of VXI-SDK.

• Application of the presented methodology should accelerate the development process due
to the short time between SCPI driver modification in VXI-SDK and testing of the driver
in VXI-IC.
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6

VXI-MBT Realization

This chapter describes how the main goal of the thesis was realized based on the VXI-MBT
model presented in chapter 5. The chapter is split in two main sections. Section 6.1 de-
scribes implementation of VXI-IC — both hardware and firmware. Firmware is considered in
this chapter as software implemented in VXI-IC. VXI-SDK, the software part of VXI-MBT,
is described in section 6.2. All additional details important for this chapter are included in
appendices. An overview of the VXI-MBT implementation has been presented in [56].

6.1 VXI-IC Design and Implementation

6.1.1 Mechanical Issues

The tool is realized as an electronic card that is part of the C size VXI module. It has the P1
and P2 connectors for interfacing the VXI bus and a connector for a user device. Figure 6.1
presents physical dimensions of VXI-IC. The user device and VXI-IC are connected by the J1
connector and optionally by some kind of mechanical handle for board alignment. The area of
the VXI-IC card was minimized in order to leave as much space as possible for user electronics
(the gray area in figure 6.1). The user device must contain a complementary connector or
an appropriate adapter for the electrical and mechanical connection.

6.1.2 Hardware

The realization of VXI-IC was preceded by analysis of hardware and software requirements.
The following functional requirements determined the selection of hardware components used
for VXI-IC realization:

• As was presented in chapter 5.2, realization of the SCPI driver requires a processor.

• The processor needs some peripheral devices for proper operation such as non-volatile
program memory, RAM, local bus, etc.
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Figure 6.1: Dimensions of VXI-IC and a User Device

• A digital circuit is required to provide a VXI message-based interface — at least 160
signals must be connected through the P1 an P2 connectors.

• VXI-IC must provide a device connector for the user electronics — this connector
should have an appropriate number of pins for implementation of a local bus to the user
device.

In order to fulfill all of the above requirements a modern FPGA chip, Virtex II Pro from
Xilinx, was chosen as a main component of VXI-IC [57]. It integrates in a single chip a ma-
trix of logic cells, blocks of RAM, hundreds of I/O pins and most important — an embed-
ded processor PowerPC [58]. This versatile FPGA chip offers a number of features which
make it useful in various applications. The following list presents only features important for
the VXI-IC realization:

• Single chip implementation which saves space on the VXI-IC board.

• Flexible configuration — FPGA is a reprogrammable device. This feature is essential
at the prototyping stage. A major part of the VXI-IC intelligence is implemented in
the FPGA chip. All peripheral devices are connected to the FPGA and can be controlled
through GPIO pins. The advantage of the FPGA is that several iterations of VXI-IC
functionality development can be performed without hardware redesign.
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Figure 6.2: Block Diagram of VXI-IC Hardware

• Almost 400 GPIO pins. This number of pins allows connection of all necessary periph-
eral devices and interfaces.

• High speed - implementation of the VXI interface in the FPGA with a high local clock
frequency allows pushing the data transfer rate beyond the maximum throughput of
the VXI bus in A32/D32 mode.

• The IBM PowerPC is a 32-bit RISC, industry-standard processor. The PowerPC is
supported by third-party companies with several operating systems, compilers and soft-
ware libraries. All peripheral devices of the PowerPC are synthesized from logic cells.
The variety of IP (Intellectual Property) cores offered by Xilinx gives high flexibility for
customization of the processor system. Buses, memory controllers, interrupt controllers,
timers, digital interface controllers, etc. can be included in the project on request. Only
necessary cores need be built in, hence, utilization of the FPGA logic cells can be re-
duced to a minimum. The rest of the logic cells are available for the implementation
of custom components such as the VXI or device interfaces. Xilinx also provides bus
bridges and adapters which allow connection of custom FPGA components to the local
bus of the processor. All working registers of the custom components can be accessed
from the processor software.

Due to all these features of Virtex II Pro, only a few additional hardware components were
necessary to build the complete VXI-IC. A rough block diagram of VXI-IC is presented in
figure 6.2.
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The Virtex II Pro doesn’t provide a non-volatile memory for the FPGA configuration and
the processor program. A Xilinx System ACE chip and a CompactFlash (CF) card [59] were
chosen to meet both requirements. Xilinx developed the Advanced Configuration Environment
(ACE) System for FPGA configuration. The System ACE chip has a local communication bus
connected to the FPGA on one side and interfaced to the CF socket on the other. The System
ACE also has a Joint Test Action Group (JTAG) interface which is connected to the FPGA.
The advantages of the System ACE and the CF card used in VXI-IC are:

• The System ACE automatically configures the FPGA after the power is turned on. All
necessary configuration files are stored on the non-volatile CF card. The System ACE
has a JTAG interface which is connected to the FPGA. It can configure several FPGA
chips which are in the JTAG chain. The CF card is capable of storing several FPGA
configuration files from which the System ACE picks one during the configuration
process. This feature is very convenient during development of VXI-IC.

• The CF card stores files in a file system. There are two types of possible file systems on
the CF card: FAT12 and FAT16. This means that the most popular operating systems
are able to mount the CF file system and access the files. The PowerPC firmware is also
able to read and write files on the CF card. The CF card is used to store Virtex II Pro
configuration files and configuration files of the VXI-IC firmware. This feature reduces
the need for physical configuration switches located on the VXI-IC.

• The capacity of modern CF cards is impressive, with up to 8 GB now available. Since
the FPGA and firmware configuration files occupy only a few megabytes of the CF
memory, the rest of the space is available to the VXI-IC user for custom applications.

Sufficient RAM is necessary for proper operation of the processor. It is possible to synthe-
size memory for the PowerPC from blocks of RAM in the FPGA, but only 128kB is available
in this type of Virtex II Pro. Hence, external dynamic RAM memory with 32MB capacity was
added for proper operation of the processor. Although part of the RAM is used by the VXI-IC
driver running in PowerPC, there is still a lot of memory for the device driver.

There is a set of configuration switches on VXI-IC, all of which are connected directly to
the FPGA. Some of them are used for configuration of the FPGA booting process, and only
one is required by the VXI standard — the VXI logical address of the board. The details of
the switch configuration are in appendix D.4.1.

There are several connectors on the VXI-IC which play various roles:

• P1 and P2 are standard DIN 41612 male connectors. Their pinouts are strictly defined
by the VXI standard. Almost all signals from the VXI bus are wired to different com-
ponents of VXI-IC1. The VXI-IC firmware doesn’t make use of all functionality of

1Only analog SUMBUS from the P2 connector is not connected
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the VXI bus, but makes it available to the user device and to the device driver. Most
of the P1 and P2 pins are connected through buffers which provide appropriate voltage
level translation and current source capability.

• The PWR connector offers to the user device all voltages available on the P1 and P2
connectors. The VXI standard defines several voltages such as +/-12V, +/-24V, 5V, -2V
and -5.2V. VXI-IC uses only 5V, but all are available to the user device.

• The DEVICE connector is an interface for the user device. It is a DIN 41612 female
connector. Part of the pins are pre-defined. The 5V, +/-12V and ground pins are already
assigned and reflect the location of the same pins on the P1 connector. The reason
is that some VME cards may be attached to VXI-IC. There are also pins with TTL and
ECL trigger signals wired from the P2 connector to the DEVICE connector. The most
important feature of the DEVICE connector is 64 user pins. These pins are connected
to the FPGA through bi-directional buffers. The direction and enabling of the buffers
are controlled from the FPGA firmware. The buffers reduce the likelihood of VXI-IC
destruction due to user device failures or wrong connections. The pinout of the DEVICE
connector is described in appendix D.5.3,

• The LED connector is also connected to the FPGA and allows driving 8 LEDs from
the processor software. Four of them are defined by the VXI standard and should be
located on the VXI device front panel. The other four are available for the user and
accessible from the device driver. The physical location of the user LEDs is not defined
— they may be mounted on the front panel or directly on the connector.

• The RS-232 connector is wired to the PowerPC in the FPGA. It is used as a debug port
and is configured as a standard input/output stream for the processor. It is especially
useful at the development stage when debug messages can be printed out directly from
the device driver routines. The RS-232 socket can be mounted on the front panel and
connected with VXI-IC by a cable. The RS-232 terminal offers some debug commands
which may be used by the developer for checking the VXI-IC state. The command list
of the serial port is given in appendix D.1.

The VXI-IC was produced as a 10-layer printed circuit board. Figure 6.3 presents a pic-
ture with top view of VXI-IC.

6.1.3 VXI-IC Firmware

The VXI-IC firmware is a mixture of FPGA components and software running in the PowerPC.
The FPGA firmware is written in the Very High Speed Integrated Circuits Hardware Description
Language (VHDL). The PowerPC firmware is written in ANSI C. Figure 6.4 presents a block

61



Figure 6.3: A top view of VXI-IC

diagram of the VXI-IC firmware. All components located in the box labeled PowerPC3 are C
routines. Components outside the PowerPC box are implemented in VHDL.

Due to the firmware complexity it is not possible to present all signals and components in
one figure. It should be kept in mind that figure 6.4 presents only a simplified diagram of
the firmware.

VXI-IC is a VXI message-based servant compliant to IEEE 488.2. The firmware was im-
plemented according to the Device Status and Message Exchange Diagram and to the Message
Exchange Control Interface defined by the IEEE 488.2 specification, both briefly described
in appendix C. Several practical implementations of the IEEE 488.2 device with a IEEE
488.1 interface in measurement devices have proved its efficiency and usability [53]. This
section presents a unique implementation of IEEE 488.2 using VHDL and ANSI C code in
the PowerPC. There is no available literature describing similar solutions for the VXI bus.

In order not to repeat in this document the text of standards, the following sections only
briefly describe standard features. The unique, custom features typical for VXI-IC are de-
scribed more extensively.

6.1.3.1 VXI Interface

The IEEE 488.2 standard describes the device model with respect to the IEEE 488.1 bus.
The VXI standard adapted this model to VXI systems, i.e. a VXI message-based device may be
compliant with IEEE 488.2 by implementing some optional features. Figures C.1 and C.2 in
appendix C are taken from the IEEE 488.2 specification. The IEEE 488.1 bus was replaced by
the VXI bus and the I/O control block presented in the same figures provides a VXI interface
instead of the IEEE 488.1 bus interface. The VXI interface in figures C.1 and C.2 corresponds
to the set of light gray boxes in figure 6.4. The dark gray boxes in figure 6.4 correspond
to similar IEEE 488.2 boxes in figures C.1 and C.2. The differences between them due to

62



VXI
WSP

Execution

Input
Queue

Output
Queue

Parser Interrupt
Handler

Formatter

VXI-IC
Driver

Device
Driver

RAM
Interface

RS-232
Interface

LEDs
Interface

SystemACE
Interface

User 
Device
Arbiter

Interrupt Vector

VME Slave
A24/D16 or A32/D16

Device
Interface

Status
Reporting
& Errors 
Queue

RS-232
Driver

VME Slave
A16/D16

VME 
Requester
& Master

VME Interrupt
Requester

VXI 
Configuration

&
Communication

Registers

VXI LBUS
Interface

SysACE
Driver

VXI

VXI

VXI

VXI

VXI

Front
Panel

System
ACE RAM

Front
Panel

User Device

PowerPC

FPGA

VXI

VXI Triggers
Control 

& Sense

VXI

Offset
Address

L
O
C
A
L

B
U
S

Interrupt Lines
VXI Interface
Components

LEGEND:

Message
Exchange

Control

IEEE 488.2 Device
Components

Figure 6.4: Block Diagram of VXI-IC Firmware

implementation issues are described in the following paragraphs.

The box labels of the VXI interface indicate which components are defined by the VME
standard and which are related to the VXI standard. The detailed implementation of the VME
components in VHDL is described in [60]. The details of the VXI message-based servant
implementation are in [61]. The components of the VXI interface are briefly characterized
here.

The VME slave component responds to a read or write action initiated by a VME master.
This is an obligatory feature both in the VME and VXI standards. There are several commu-
nication modes defined by the VME standard that differ in the address and data width. All
of them are optional in the VME standard, but at least one of them must be implemented in
a VME slave. Three of these modes are implemented in the VME slave component of VXI-IC.
The A16/D16 mode is obligatory in every VXI device. This mode is used by a VXI controller
to get access to the configuration and communication registers in the VXI device. The base
address of the VXI device in the A16/D16 mode is determined by the obligatory configuration
switch located on VXI-IC. The value of this 8-bit switch is transformed in the VME slave into
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an A16 address and compared with the address on the VXI bus. A more precise explanation
is given in appendix D.4.1. The other two modes, A24/D16 and A32/D16, are used for direct
access to the user device. The use of these two optional modes is explained in appendix D.13.

The VME master initiates communication on the VME bus. The VME master component
is optional in VXI devices and it is implemented when special VXI features are required. In
the case of VXI-IC, the VME master is used for the VXI event and signal generation mecha-
nism. The VXI-IC notifies its commander of an event occurrence in VXI-IC by writing a status
word to the commander register, as described in section 5.1.1. The VME master component is
integrated with the VME bus requester. Prior to the VME master access, the VME bus must be
granted by the VME bus arbiter located in slot 0. The VME bus arbiter is notified by the VME
bus requester that bus control is required by VXI-IC.

The VME master component is connected directly to the local bus of the processor. There is
a set of C routines which allows control of the VME master from the device driver. The device
driver can directly send a VXI event to the VXI-IC commander. The list of possible events and
signals generated by VXI devices is in appendix E.4 of the VXI standard.

The VME master capability can be also used by the device driver to initiate communication
with any device in the VXI system. For example, VXI-IC may take control of a register-based
device located in the same VXI system.

The VME master is capable of communication on the VXI bus in several modes. Appendix
D.7 describes details of how to use the VME master component directly from the device driver.

The VME interrupt requester is a mechanism used by the VXI servant to notify its com-
mander about an event or service request. This is an alternative to the VXI event and sig-
nal generation mechanism described in previous paragraph. VXI-IC has one VME interrupt
requester, which is connected to the VME interrupt lines on the VXI backplane. It gener-
ates interrupt requests and responses to an interrupt acknowledge cycle initiated by the inter-
rupt handler in its commander. The VME interrupt requester is implemented as Release On
Acknowledge (ROAK), as defined in the VME specification. The VME interrupt requester
component in VXI-IC is configurable. During system initialization, the resource manager as-
signs to the VME interrupt requester the VME interrupt line number using WSP commands.
The VME interrupt requester is controlled from the PowerPC software and is visible as a set
of registers. The device driver can take over control of the VME interrupt requester and use
it to generate an interrupt on the VME bus. The status word returned by the VME interrupt
requester during the interrupt acknowledge cycle must also be provided from the device driver
routine and it is the same as in the VXI event and signal generation mechanism. Details of how
to use the VME interrupt requester from the device driver are in appendix D.8.

VXI configuration and communication registers are defined by the VXI standard. The con-
figuration registers are obligatory for every VXI device. The communication registers are re-
quired only for message-based devices. Both are implemented in VXI-IC. Appendix D.9 con-
tains a list of implemented registers — the gray boxes on the full list of registers. All registers
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are located within A16 address space. The VXI base address of the registers is determined by
the logical address, see appendix D.4.1. The configuration registers in VXI-IC are used by
the VXI resource manager to identify the VXI device type and its capabilities, to read device
status, and to assign an address offset in A24 or A32 operation mode. The communication
registers in VXI-IC are used by the VXI resource manager to determine message-based device
capabilities and protocols, and to exchange messages. VXI-IC contains only those registers
which are relevant for the message-based servant. Some fields of the configuration registers
are available for the device developer. The fields Manufacturer ID and Model Code are used by
the developer to identify himself and his device in the VXI system. The fields Address Space

and Required Memory determine the additional address space required by the user device. More
details how to set up the values of these registers are in section 6.1.3.8.

VXI WSP execution is a VHDL component which decodes and executes WSP commands.
As was described in section 5.1.1, WSP is the only obligatory protocol for message-based
devices. Besides obligatory WSP commands, VXI-IC supports also commands for the VXI
message-based servants compliant to the IEEE 488.2 standard. Commands related to the pro-
grammable interrupter, the event and signal generator, and the VME master component are
also implemented. The WSP commands supported by VXI-IC are listed in appendix D.10. All
these commands are used by the VXI-IC commander to configure VXI-IC features and to read
its status.

In order to receive commands from the VXI bus, the WSP execution component is con-
nected to the VME slave component. It is also connected to the input queue, output queue
and status reporting components. The WSDTP commands, Byte Available and Byte Request,
are used to transfer IEEE 488.2 Common Commands and SCPI messages. The Byte Available

command puts into the input queue one character of an incoming message. The Byte Request

command returns to the control software one character of a response from the output queue.
The mechanism of WSDTP implemented in VXI-IC is precisely described in [61]. The Read

STB command returns to the commander the content of the status byte register. This command
is related to the Serial Poll function in the IEEE 488 systems. More details of the status regis-
ters are specified in appendix D.11. The WSP component also executes the Trigger command,
which generates an interrupt to PowerPC. The Trigger command corresponds to the GET mes-
sage in IEEE 488 systems. The WSP commands are invisible to the user of VXI-IC, who should
only be aware of their existence.

The VXI triggers control and sense component is a part of the bigger triggering subsystem
implemented in VXI-IC. The entire trigger subsystem is described in detail in section 6.1.3.6.

The VXI LBUS interface enables access to two local buses, LBUSA and LBUSC, situ-
ated on the outer rows of the P2 connector. Each bus has twelve lines which are connected to
modules in adjacent slots as presented in figure D.10 in appendix D.12. The VXI backplane
connects LBUSA of slot N to LBUSC of slot N-1, and LBUSC of slot N is connected to LBUSA
in slot N+1. The VXI specification defines five voltage classes which are allowed on LBUS.
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VXI-IC implements the TTL class on both sides. The utilization of LBUS in VXI-IC is com-
pletely user dependent. It is accessible from the device driver. The set of working registers for
the LBUS interface component allows enabling and changing the direction of particular set of
lines. The protocol applied on LBUS is not specified. VXI-IC may work as a master or a slave.
For the case of slave mode, the firmware in the PowerPC doesn’t know when a transmission
has been initiated by an adjacent module. In order to notify PowerPC about a transmission
initiated on LBUS, a dedicated LBUS pin (selected during VXI-IC configuration) generates
an interrupt to the PowerPC. When the interrupt occurs, an empty user entry routine is called.
The action taken by this routine depends on code written there by the developer. The interrupt
driven LBUS service routine reduces the load on the PowerPC compared to a polling method
for LBUS event detection. More details on how to use LBUS from the device driver are given
in appendix D.12.

6.1.3.2 Implementation of the IEEE 488.2 Message Exchange Control Interface

The implementation of VXI-IC according to the IEEE 488.2 standard is a crucial point. A short
description of the IEEE 488.2 device model is presented in appendix C. The implementation of
the IEEE 488.2 message exchange protocol (MEP) in the message exchange control interface
(MECI) is quite complicated. A similar implementation of the IEEE 488.2 device, but for
the IEEE 488.1 bus, is presented in [53]. It was done using a Motorola 68000 processor and
the TMS9914 integrated circuit from National Instruments. TMS9914 is a single chip with
the IEEE 488.1 interface on one side and Industry Standard Architecture (ISA) bus interfac-
ing 68000 on the other side. This chip implements the message exchange control interface.
The author of this article [53] proposed modification of the MECI due to the fixed interface of
TMS9914 to the processor.

In case of VXI-IC the IEEE 488.1 interface is replaced by the VXI interface. The imple-
mentation of MECI and all other components in VHDL is free of any limitations. All necessary
signals and components which must be connected to the PowerPC are synthesized from FPGA
logic cells. The interrupt vector of the processor has been enhanced, permitting MECI to notify
the PowerPC of events such as incoming messages, reset or WSP trigger commands.

Figure 6.5 presents details of the MECI implementation in VXI-IC. It is a mixture of
VHDL components and C routines. The white components located in the gray box labeled
PowerPC are software routines. The components outside the PowerPC are implemented in
VHDL. The thin arrows in VHDL mean single signal, and in PowerPC, routine calls. The thick
arrows indicate parallel data transfer. Since MECI and MEP are implemented according to
the IEEE 488.2 standard, this section only describes development issues specific to VXI-IC.

Implementation of the parser, execution control, and response formatter is done using
the C language. The parser and response formatter are relatively easy to implement because
the specification of the IEEE 488.2 syntax is clear. The execution control is also imple-
mented in C, but it is split into two functional blocks: the VXI-IC driver and the device driver.
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The implementation of the input queue, output queue, and I/O control is done in VHDL. All
of the VHDL components and the software routines are managed by the message exchange
control block. It is implemented as a finite state machine with states and transitions defined in
the IEEE 488.2 specification. The functionality of the message exchange control is supported
by the processor interrupts and the set of interrupt handler routines in PowerPC. The state tran-
sitions are driven by signals routed from other VHDL components. The PowerPC routines can
also force state transitions by writing to the control register located in the message exchange
control.
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The MECI has no direct access to the VXI bus. It interacts only with the WSP execution
component which is a part of the VXI interface. The WSP execution component handles all
VXI related actions relevant for the IEEE 488.2 device. The IEEE 488.2 signals bav, brq,
dcas, and get are asserted when the WSP commands Byte Available, Byte Request, Clear, and
Trigger, respectively, are executed. There is no WSP command corresponding to the RMT-sent

(Response Message Terminator sent) signal in the IEEE 488.2 specification. The WSP execu-

tion block sets the RMT bit in the response word of the Byte Request command when the last
byte of the response data is sent to the control software. In parallel to asserting bav and brq sig-
nals, the data byte is put into the input queue and taken out of the output queue when the Byte

Available and Byte Request commands, respectively, are executed.

The Status Reporting & Error Queue is connected to the WSP execution by an 8-bit signal
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named srq. This signal reflects 8 bits of the Status Register Byte, see appendix D.11. This byte
is returned to the control software as a response to the Read STB WSP command.

Another important difference from the IEEE 488.2 device is the absence of the device func-

tions block which is present in figure 6.5 of the IEEE 488.2 specification. This part of MECI is
user dependent and it resides in a user device. Nevertheless, the device developer is obligated
to provide standard signal pon which has a dedicated pin in the device connector.

Routing of the signals from parser, device driver, VXI-IC driver and response formatter

to MECI is done through local bus, because these components are implemented as software
routines in the processor. The PowerPC has no general purpose I/O pins which might be used
for this purpose. In order to do the routing, the MECI has been equipped with a local bus
slave component and an internal control register. This register contains bits which correspond
to the signals eom, query, p-blocked, ec-blocked, and rf-blocked from the IEEE 488.2 speci-
fication. When one of the signals must be asserted the appropriate software routine sends to
MECI the control byte with the corresponding bit set to one. The MECI has a write monitor
on the control register and it reacts to the control register writes as if the regular signal was
asserted. The signal routing in the opposite direction, from MECI to the processor, is done
through the PowerPC interrupts. The parser, driver, trigger control or formatter is launched
by the interrupt handler when an appropriate interrupt is generated by MECI. For example,
the parser doesn’t need to check in the loop whether a data byte has appeared in the input
queue; in this time, the processor does other tasks. When an interrupt occurs, the interrupt han-
dler routine checks the reason for the interrupt. If the input-avail signal (interrupt) is asserted
the parser routine is called with parameter not-ib-empty.

The PowerPC has only one external interrupt pin, so an external interrupt vector was im-
plemented in VHDL for connection of more interrupt sources. The interrupt vector has many
interrupt sources but only signals important for the MECI implementation are presented in fig-
ure 6.5. The interrupt enabling and priority mechanism, which is not visible in figure 6.5, helps
to avoid improper ordering in the handling of the interrupts. In addition to the input-avail inter-
rupt, there are three other interrupt sources. The get interrupt is just a forward of the get signal
which is asserted by the WSP execution when the WSP Trigger command is executed. When
the get interrupt occurs, the trigger control routine is called. More details of the trigger subsys-
tem are shown in section 6.1.3.6. The prf-reset interrupt originates from the dcas signal which
is asserted by the WSP execution block when the WSP Clear command is executed. When
the prf-reset interrupt occurs the parser, response formatter, device driver, and VXI-IC driver

are reset. The last interrupt, service-request, is asserted by the user device. There is a dedicated
pin in the device connector which is wired to the interrupt vector. This interrupt is used by
the user device to notify the formatter that data for a response is ready. When the service-

request interrupt occurs, the interrupt handler calls the response formatter with the resp-avail

parameter. The service-request interrupt is used when overlapped commands or queries are
executed. In the overlapped mode the PowerPC performs other tasks while the user device
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processes messages. The interrupt driven PowerPC software profits by saving processor time,
which may be used for other tasks.

The last important extension of the IEEE 488.2 standard is the execution control. In fig-
ure C.1, the execution control is presented as one block, which performs actions according to
the parsed SCPI commands and queries. The execution control in the VXI-IC firmware is split
into two software modules, the device driver and the VXI-IC driver, as presented in figure 6.5.
The drivers perform the same tasks as the execution control in IEEE 488.2, but they execute
two disjoint sets of SCPI commands and IEEE 488.2 Common Commands. The predefined set
of commands consists of obligatory Common Commands, obligatory SCPI commands, VXI-IC
diagnostic and trigger commands. This set of commands, listed in appendix D.1, is executed
by the VXI-IC driver. The VXI-IC driver is not alterable by the device developer and it is
always included in VXI-IC. The device driver executes SCPI commands specific for the user
device. The set of device-specific SCPI commands is defined during the development process
of the user device. Each device-specific SCPI command must have an associated execution
routine in the device driver. The device driver is written during development of the user de-
vice and it is compiled every time that a new device-specific SCPI command is defined. This
division into two parts is essential from the development point of view. Even if all routines of
the device driver are erased, VXI-IC still works because the VXI-IC driver is never affected by
the developer activity.

6.1.3.3 Parser and Formatter

The parser is implemented as a set of C routines and is executed by the PowerPC [62]. Figure
6.6 presents the interaction of the parser with other components in VXI-IC.

When the VXI-IC firmware starts, the definitions of Common Commands and SCPI com-
mands are loaded from the CF card to the RAM. The list is used by the parser for command
interpretation. The parser is not active when the input queue is empty. When at least one byte
of a new command appears in the input queue, an interrupt is generated to the PowerPC, see
figure 6.5. The interrupt handler then launches the parser routine.

The parser fetches from the input queue data bytes, which are message characters, and
starts the parsing process. Each time before the next character is taken out from the input
queue, the parser checks that the queue is not empty — signal ib_empty not active. During
the parsing process, the parser verifies that the incoming command is syntactically correct. In
the next step, the parser interprets the command by checking whether it has a related entry
in the commands list in the RAM (i.e. whether the syntactically correct command may be
executed by the particular device). After the input command has been successfully interpreted,
the parser puts into RAM output data which is simultaneously input data for the execution
control. This data contains: a command code, an optional list of suffixes, if such exist for
the particular command (e.g. :INPut:CHAN3 - where 3 is the suffix; a command may contain
zero, one, or more suffixes), and a list of parameters, if such are defined for the particular
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Figure 6.6: Data and Control Flow from/to the VXI-IC Parser

command (a command may have zero, one, or more parameters). If the parsed command was
a query, the query signal is asserted. If the parser detects an eom bit, (a ninth bit of the data byte
in the input queue), it also asserts the eom signal connected to the message exchange control
component. In the case of the parser error, the eom signal is not asserted. After the command
has been successfully parsed, the parser returns to the idle state.

If an exception occurs during the command parsing or interpretation, the parser reports
an error by asserting the error signal and putting an error code to the error queue. The invalid
command is not executed and the parser returns to the idle state.

The formatter is only a set of C routines which are invoked when new response data is
ready. The goal of the formatter is to convert response data from local data types into a character
string and put it into the output queue. The formatter is launched only when a query message
has been parsed. Otherwise, it is not allowed to put any data to the output queue. If something
appears in the output queue when MECI is not in the Query state, it should generate a protocol
error. The data and signal flow is presented in figure 6.7.

The developer is provided with the set of formatting routines which format the elements
of response messages according to the IEEE 488.2 syntax. The list of formatting routines is
in appendix D.15. The formatter routines take a portion of the response data as a routine
parameter, convert it to a character string, and put it into the output queue. When the last
portion of data is formatted, the developer must launch the formatting function with the eom

parameter set to true, see appendix D.15. Then the formatting routine puts into the output
queue, together with the last character, a data byte which has the ninth bit set to one. It is later
used to set the RTM-sent bit in the response word of the WSP Byte Request command. This
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tells the control software, when reading the response from VXI-IC, that the last character was
received.

The data to be sent resides in the RAM. The source of data can be the VXI-IC driver, the de-
vice driver, or the the device interrupt routine. For the VXI-IC driver and the device driver,
the response generation and formatting are a part of the driver routine. The device developer
needs to invoke in the driver routine appropriate formatting routines which put the response
data into the output queue. The service request interrupt is generated by the device when
the query is executed in so-called overlapped mode. The implementation of the sequential and
overlapped modes of command execution is described in appendix D.14. There is a user entry
routine for handling of the service request interrupt. This routine is filled out by the device
developer according to the behavior of his device. The routine is mainly intended to format
response data fetched directly from the user device.

If the output queue is full, the formatting routines assert the rf-blocked signal and the for-
matting routine waits for room in the output queue. If an error occurs during the response
formatting process, the formatting routine asserts the error signal and puts the error code into
the error queue.

There is also a possibility to print debug messages on the RS-232 Interface of VXI-IC. This
helpful option may ease the debugging process for the developer.
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6.1.3.4 Command Execution Mechanism

As was already mentioned, the execution control consists of the VXI-IC driver and the device
driver. Both are also sets of C routines and they run in the PowerPC. The data and signals
flow of the execution control is presented in figure 6.8. The execution control contains one
main routine which is called when a new message is parsed. This routine reads data from RAM
which was put there by the parser. First of all the execution control checks the command code.
Depending on the type of the command code, the VXI-IC driver or device driver is called.
The main routine of the execution control knows which SCPI commands and Common Com-
mands are executed by the VXI-IC driver and which by the device driver, and what routines
are associated with these commands.
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Figure 6.8: Function Block Diagram of the Execution Control

The VXI-IC driver is a set of routines associated with pre-implemented commands deliv-
ered with VXI-IC. This driver is constant and cannot be changed by the developer. The com-
mands executed by the VXI-IC driver are listed in appendix D.1. The VXI-IC driver routines
only act on the VXI-IC functionality. Presence of the user device is not required for the VXI-IC
driver.

The device driver is empty when a new project is created. It is only meant to collect driver
routines for device-specific SCPI commands and Common Commands which are not executed
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by the VXI-IC driver. The device driver controls user device functions. But it may interact with
the VXI-IC functions as well, e.g. LBUS communication on the VXI bus. The developer may
also define SCPI functions which extend the functionality of VXI-IC itself without interacting
with the device driver.

When the VXI-IC driver or the device driver routine execute a query, the response data
must be generated. The form of non-formatted response data is up to the developer, because,
as was explained in the previous section, the developer uses the formatter routines to convert
the data into a character string.

When an error occurs during the driver routine execution, the error signal must be asserted
and the error code must be put into the error queue. In order to do that, the developer needs to
call a special C routine with the error code as an argument — the rest is done by this routine.

There is a possibility to print debug messages on RS-232 output from the device driver
routines using the standard printf C function. This significantly helps during debugging
process of the new routines.

6.1.3.5 User Device Interface

The task of the device interface is to provide an electrical connection between VXI-IC and
the user device. The device interface is physically made up of two connectors. The smaller one
makes available to the user device voltages provided by the VXI backplane, as was described in
section 6.1.2. The pinout of the power connector is in figure D.4 in appendix D.5. The larger
connector, marked as DEVICE in figure 6.2, enables communication between VXI-IC software
and the user device. The user device may be an arbitrary type of electronic equipment. It could
be a device with a very simple interface consisting of a few control lines and a few status lines,
or a complex digital device with a processor and its local bus. With respect to these possibilities,
two operation modes of the device interface were proposed.

General purpose I/O mode is useful for simple user devices which don’t implement local
bus functionality. In this mode, particular lines or groups of lines may be responsible for
the control and status report functions of the user device. There are 64 GPIO lines which can
be configured by the device developer. The GPIO lines are grouped by eight bits into eight
bi-directional buffers. Each buffer can be individually disabled or enabled with appropriate
direction. The device developer needs to configure the GPIO lines in VXI-SDK before the user
device is connected to VXI-IC. When VXI-IC boots up, the configuration of GPIO lines is
automatically set up and it remains unchanged during operation. The state of each line can
be read and written from the device driver using C functions as well as from control software
using SCPI messages, see appendix D.5.3.1. The developer can write device driver routines
which operate on individual lines or groups of lines connected to the user device.

The device local bus operation mode sets up a local bus for interfacing more advanced user
devices. In this mode, the state of the VXI-IC device connector pins is pre-defined. There are
24 address lines, 16 data lines and 5 control lines. The address space of working registers in
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the user device is mapped into the address space of the PowerPC local bus. Access to the user
device from the device driver is performed by reads and writes of memory addresses, see
appendix D.5.3.2. The address space reserved for the user device in PowerPC is 16M of 16-bit
words. The data transfer between PowerPC and the user device is controlled by a handshake
protocol, thus the speed of transmission is adjusted to the speed of the user device. The timing
of the handshake protocol is presented in appendix D.5.3.2. The PowerPC is always a master
and the user device is a slave. The timeout mechanism in the PowerPC local bus protects against
system failure when the user device doesn’t respond to the read or write operation within 20µs.

There are also several pins in the device connector which have a predefined meaning in
both modes such as power, ground, triggers, device interrupt, etc. These lines are described
in appendix D.5.3. The VXI TTLTRG and ECLTRG trigger lines are wired from the VXI
backplane through low latency buffers directly to the device connector.

6.1.3.6 Trigger Subsystem

The VXI-IC connects eight TTLTRG lines and two ECLTRG lines available on the P2 connec-
tor of the VXI backplane. These lines are routed through bi-directional buffers to the FPGA on
VXI-IC and simultaneously to the user device, see fig. 6.9.
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Figure 6.9: Implementation of triggers in VXI-IC

The direct routing from the VXI backplane to the user device minimizes the propagation
time of trigger signals. The VHDL components of the FPGA operate synchronously with a lo-
cal clock at frequency 100MHz (10ns period). The specification defines a minimum TTLTRG
pulse length greater than 30ns, hence the trigger control VHDL component is able to detect
each TTLTRG pulse. For detection of ECLTRG pulses the VHDL component works at double
clock rate. The component latches ECLTRG lines on rising and falling edge of the clock which
gives 5ns sampling time. That fulfills the VXI specification by which the trigger acceptor must
detect signals with a setup time of at most 8ns, see section B.6.2.3 and B.6.2.4 in the VXI
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specification.
Each TTLTRG and ECLTRG line can be individually set up as an input, output or both.

The VXI-IC can work both as an acceptor and as a source of trigger signals at the same time.
Both modes are described below.

The trigger acceptor is implemented as a simple ARM-TRIGger model according to the SCPI
specification [16]. The ARM-TRIGger model assumes four states of the trigger subsystem plus
the device action. The list below presents the SCPI commands which are implemented in
the VXI-IC.

:ABORT
:ARM

[:SEQuence[1..8]]
[:IMMediate]
:INITiate

:INITiate
[:IMMediate]

:TRIGger
[:SEQuence[1..8]]

[:IMMediate]
:INITiate
:SOURce?
:SOURce TTLTrg[0..7]|ECLTrg[0..1]|INTernal

These are all standard SCPI commands described in the specification. Up to eight parallel
sequences can be used by the device driver. Only one layer of the ARM state is implemented.
The behavior of the trigger subsystem conforms to the state diagram described in the SCPI
specification.

Based on the ARM-TRIGger model, the developer can extend the trigger subsystem func-
tionality in VXI-IC by adding new commands defined by the SCPI specification.

All trigger lines are connected to the interrupt vector of the processor. The special entry
routine is invoked by the interrupt handler in the PowerPC when a special event occurs on any
of the trigger lines. Appendix D.18 describes the working registers of the trigger subsystem
which can be used to detect the source of a trigger.

The trigger source in VXI-IC can drive any of the trigger signals. Each of the TTL or ECL
trigger lines can be driven from the PowerPC software. The SCPI tree was implemented for
this purpose, as listed below:

:OUTput
:ECLTrg[0..1]

[:IMMediate]
:LEVel?
:LEVel <Boolean>
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[:IMMediate]
:STATe?
:STATe <Boolean>

:TTLTrg[0..7]
[:IMMediate]
:LEVel?
:LEVel <Boolean>

[:IMMediate]
:STATe?
:STATe <Boolean>

An internal trigger can be generated using the :IMMediate or :LEVel commands.
The :IMMediate command causes generation of a trigger pulse by VXI-IC. The :LEVel
command is used to change a voltage level on the trigger line driver by VXI-IC.

The trigger generated by VXI-IC automatically propagates through the bi-directional buffers
to the user device, which allows triggering of the user device directly from VXI-IC.

6.1.3.7 Other Processor Peripheral Devices

Besides several firmware components implemented due to the specification requirements, there
are several VHDL components which are important for operability of the processor. Short de-
scriptions of these components are included below to give an overview of additional capabilities
of VXI-IC. All the described components are presented in figure 6.4.

The RAM interface translates the external memory chip dependent signals into the local
bus communication protocol. VXI-IC contains 32MB of dynamic RAM. The memory is orga-
nized as 4M of 32-bit words. The entire memory is available for the PowerPC firmware. Part of
the memory is already used by the parser and it is allocated statically. The rest of the memory is
used dynamically by the VXI-IC driver and the device drivers. Standard C memory allocation
functions such as malloc and free are available for the device driver to use the memory in
custom routines.

The System ACE interface component is a bridge between the specific communication bus
of the System ACE chip on one side and processor local bus on the other. The System ACE
VHDL interface is coupled with the System ACE driver of the processor firmware. The Sys-
tem ACE driver exports to the PowerPC firmware high level functions for files manipulation.
The files stored on the Compact Flash card are used to configure VXI-IC and its firmware. But
this file system can be also used from the device driver by calling functions from stdio C
library such as fopen, fread, fwrite, fclose, etc. The device developer can store on
the CF card any files he wants.

The RS-232 interface together with the accompanying RS-232 firmware driver is a stan-
dard input/output feature of the processor firmware. It plays a significant role during debugging
of the device driver. It may be used to display debug messages written from the device driver
routines by the standard printf C function. This is a great help for tracking the execution
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process of the device driver. The RS-232 also offers a command line interface which allows
execution of a few single character commands which may be used to check: the list of loaded
Common Commands, SCPI trees, defined errors, etc., see appendix D.6.

The LEDs interface is a component which enables access to the user LEDs from the device
driver routines. The state of these four LEDs is controlled by a simple 4-bit register accessible
from the device driver routines, see appendix D.5.

6.1.3.8 Configuration of VXI-IC

The VXI-IC has several configurable capabilities. All of the configuration options are left to
the device developers. The flexibility of VXI-IC, as was stated in chapter 4, comes from the ex-
tensive configuration capabilities of VXI-IC. The configuration of VXI-IC must be stored in
a non-volatile manner. There are two mechanisms for configuration storage: switches and files.
Most of configuration options are stored in configuration files located on the CF card. As was
described in section 6.1.2, the VXI-IC contains the System ACE chip and the socket for CF
cards. One of the CF card tasks is to store these configuration files. Only one feature is con-
figured by the switches located on VXI-IC — the logical address of the VXI-IC configuration
registers on the VXI bus. This address switch is required by the VXI specification. The details
how to set up the logical address are in appendix D.4.1.

The FPGA configuration, binaries of the embedded firmware, commands definition, etc.
are stored in the configuration files. The following points briefly describe the role of each
configuration file.

The file tool.ace is a binary file that contains the configuration for the FPGA. This
file also contains bootloader software for the PowerPC. The VXI-IC has no EPROM for storing
configuration; the System ACE with CF card is the only way to configure the FPGA. The FPGA
configuration is loaded when the VXI-IC is powered on, as described in other chapters. The file
is generated once and delivered with VXI-IC. There is no way for the developer to change
the FPGA configuration. This file is the same for all user device implementations.

The file tool.src contains executables of PowerPC embedded software in HEX format. This
file contains all the PowerPC software including device driver, VXI-IC driver and pre-compiled
libraries for the PowerPC operation. This file is generated every time that the device developer
changes the device driver routines.

The file tool.cfg is a text file and keeps several relevant configuration options of VXI-IC.
It contains VXI configuration register options such as Manufacturer ID, Model Code, Address

Space, and Required Memory. In addition, this file also includes configuration of the device
interface and many other options. The tool.cfg file is generated automatically from VXI-SDK.
A dedicated graphical panel in VXI-SDK maintains this configuration file, as described in
other chapters. This file is generated by the device developer every time that the configuration
of VXI-IC is changed. All details of the configuration options in tool.cfg are described in
appendix D.4.2.
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The file *.scp has an arbitrary name which is defined in tool.cfg. This text file is
used to store definitions of Common Commands and SCPI commands which are interpreted
by the parser. It contains definitions of both VXI-IC commands and device-specific SCPI
commands. The file is loaded to PowerPC memory during the boot up process and remains
there until power is turned off. The *.scp file is an input for the SCPI parser in VXI-IC.
This file is also generated from VXI-SDK when SCPI commands definitions are altered by
the device developer. Section 6.2.4 describes how to generate the *.scp file.

The file error.txt keeps in text format a list of possible error numbers and messages
which may be returned by the VXI-IC firmware according to the SCPI specification. The file
is generated from VXI-SDK when the device developer adds a new error code and message
which may be returned by one of his device driver routines. The error configuration procedure
is described in section 6.2.3.

All described files are mandatory and must be present on the CF card when the VXI-IC
boots up. There are two methods of loading these files onto the CF card. One is to simply
remove the CF card from the socket and plug it into a typical CF reader connected to a PC
via a USB port. The CF card is visible in the OS as a removable storage device. All gener-
ated files can then be simply copied from a local hard drive to the CF card. This method is
inconvenient when the configuration files are updated frequently. Every time the files must be
uploaded, the user device must be removed from the VXI chassis, and the CF card removed
from the socket and plugged into the CF reader. In order to eliminate this inconvenience, a SCPI
command in the DIAGnostic tree was proposed. The command :DIAG:FLASh:UPLoad
<string>, <ABPD> is used to upload an arbitrary file to the CF card. The first parame-
ter of this command is the destination file name and the second parameter is a block of data
from the file. Using this command, all necessary configuration files can be quickly uploaded
directly from VXI-SDK. After the files have been uploaded, VXI-IC must be rebooted in order
to read new configuration data from the files. VXI-IC can also be restarted by a SCPI command
:DIAGnostic:BOOT sent from VXI-SDK.

6.1.3.9 VXI-IC Initialization Process

The initialization process of VXI-IC is quite complicated due to the enhanced configurability.
First of all, VXI-IC must follow rules of message-based device initialization defined by the VXI
standard. In addition, the configurability of the parser, device driver and device interface intro-
duces more steps to the initialization process.

According to the VXI specification there are two methods of VXI device status reporting.
First of all, there are two bits in the obligatory status register of the configuration registers.
These two bits are called Ready and Passed. They are read by the VXI controller to check
whether the device is ready for normal operation.

In parallel to the status register bits, there are three LEDs on a faceplate of the device
for visual indication of the device status. Two LEDs reflect the status of the Ready bit and
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the negated Passed bit, named Failed on the faceplate. The third LED reflects the status of
the SYSFAIL* line on the VXI backplane.

Figure 6.10 presents the initialization procedure of VXI-IC. It shows what configuration
files are read at the given state and how the status indicators are affected.

Power ON

FPGA Configuration
BRAM Initialization

Starting up Bootloader

Bootloader Loads Software

Starting up System

Loading tool.cfg

Loading Commands File

Custom Initialization Routine

Interface to VXI Initialization

Interface to Device Initialization

Ready for Operation

CF Card

tool.ace

tool.src

tool.cfg

*.scp

tool.cfg

Loading Command Fileerrors.txt

SYSFAIL* asserted
Passed de-asserted
Ready de-asserted

SYSFAIL* released
Passed asserted
Ready de-asserted

SYSFAIL* released
Passed asserted
Ready asserted

Local Interrupts Initialization

Figure 6.10: VXI-IC Initialization Procedure

At the very beginning, shortly after the power is turned on, the automatic FPGA config-
uration process is performed by the System ACE chip. The System ACE reads from the CF
card the tool.ace file which contains the FPGA configuration. The FPGA configuration
takes a few hundred milliseconds. At this time the SYSFAIL* line on the VXI bus is asserted.
The Ready and Passed bits are set to 0. The FPGA firmware contains a few blocks of RAM
(BRAMs) which have been already configured by the System ACE chip with initial processor
software. The BRAMs contains the so-called bootloader program.

According to the VXI specification, the contents of the configuration registers must be
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initialized within 4.9 s.2 As described in appendix D.4.2, some fields of the configuration
registers are defined by the developer in the tool.cfg file. The bootloader reads parameter
values from the tool.cfg file and writes them to the configuration registers before 4.9 s
passes. After the register fields are initialized, the SYSFAIL* line is de-asserted and the Passed

bit is set to 1, see section C.2.1.2 in [15]. From this moment all of the configuration and
communication registers of VXI-IC are accessible on the VXI bus.

The FPGA configuration and bootloader are always the same for each project; the developer
is not able to change them. Hence, the bootloader program is used to load PowerPC firmware
compiled by the developer in VXI-SDK. The PowerPC firmware is loaded from the tool.src
file to SDRAM. When the PowerPC firmware is loaded, the bootloader jumps to the first in-
struction of the firmware. This means that the bootloader is no longer being executed by
the processor; at this moment the main program is running in the PowerPC.

The main PowerPC program also has to perform several initialization steps before VXI-IC
is ready to operate. The main program again reads the tool.cfg file from the CF card and
uses the configuration parameters for further initialization of VXI-IC and the user device. For
meanings of the parameters in tool.cfg see appendix D.4.2.

In the next two steps, the program reads command and error definitions into SDRAM,
which are later used by the parser and the drivers. Next, several registers of the VXI Interface
are initialized, which prepares the VXI-IC for message exchange.

The device interface, which has been disabled until now, is initialized in the next step. At
this stage, based on the tool.cfg content, the device interface is configured to the appropri-
ate operation mode.

Since initialization of the user device will vary for different applications a custom initializa-
tion procedure was added at this point. This procedure is empty by default, but it can be filled
out by the developer in VXI-SDK. This procedure can contain any initialization procedure for
the user device, e.g. it can detect the presence of the user device. If the user device initialization
fails the overall initialization process is also terminated.

If the user device initialization process succeeds the PowerPC interrupts are configured and
enabled. From this moment VXI-IC is ready for normal operation. The Ready bit is set to ’1’
only when the VXI controller sends the Begin Normal Operation command.

6.2 VXI-SDK Implementation

The main goal of VXI-SDK is to provide a user friendly graphical interface for the VXI-IC
configuration. VXI-SDK is written in a high level programming language, MS Visual Ba-
sic 6, in the MS Visual Studio 6 software environment. VXI-SDK works on any PC with
MS Windows. The installation package of VXI-SDK is on a CD-ROM attached to VXI-IC.

2If the device initialization fails, the SYSFAIL* line remains asserted and the VXI system initialization is
stopped.
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VXI-SDK requires a cross-compiler called powerpc-eabi-gcc which must be installed in addi-
tion to VXI-SDK on the same computer. It is a free compiler on a GNU license, downloadable
from the www.gcc.gnu.org website. A path to the powerpc-eabi-gcc file must be set up
in the configuration of VXI-SDK. Figure 6.11 presents the concept of the VXI-SDK environ-
ment.
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Figure 6.11: The Concept of VXI-SDK

The VXI-SDK environment offers a graphical interface for the following tasks: SCPI trees
definition, writing source code for the device driver routines, editing of the user entry routines,
definition of user errors, and finally, configuration of the VXI interface and the device interface.
All these tasks are described in more detail in the next sections.

When the developer starts a new project in VXI-SDK, he gets a basic SCPI tree with com-
mands which are already implemented in VXI-IC. The set of all necessary VXI-IC configura-
tion files is generated automatically with default initial settings. At every stage of the project
development, the data can be saved in project files which are stored in a folder selected by
the developer. This allows resuming the project development at any time.

When all tasks within the given project have been performed by the device developer,
VXI-SDK generates all configuration files. There are four files generated by the VXI-SDK:
tool.src, errors.txt, tool.cfg, and *.scp (command definition). The FPGA con-
figuration file tool.ace is not generated in VXI-SDK — this file is provided with VXI-IC.
The errors.txt, tool.cfg and *.scp are text files in a format understandable for
the VXI-IC firmware. The developer doesn’t need to understand the format of these files.
The tool.src file is in a binary format. It is an output of the PowerPC firmware compilation
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by the powerpc-eabi-gcc compiler. The compilation process automatically runs in a separate
command window in which compilation messages are printed out. In the first step of com-
pilation, all source code written by the developer is compiled. In the next step, the PowerPC
libraries are linked. These libraries contain the main program of PowerPC including the VXI-IC
driver. They are not editable by the developer. Finally, the tool.src file is generated.

All these four configuration files are then ready to be uploaded to CF the card of VXI-IC.
The uploading process is described in section 6.1.3.8.

The following sections present short descriptions of operational use cases of VXI-SDK.
The screen shots of the VXI-SDK windows give an impression of how to use the environment.

6.2.1 SCPI Tree Definition

Figure 6.12 presents the main window of VXI-SDK. It is split into two panels. The left one
contains SCPI trees, and the right one a complete list of the Common Commands defined by
the IEEE 488.2 standard. The menu of VXI-SDK, which includes all actions, is available only
in this window. The status bar at the bottom contains a message output for the last error which
occurred in the program.

On both panels the commands in blue are pre-defined commands implemented in the VXI-IC
and executed by the VXI-IC driver, see 6.1.3.4. The blue commands cannot be modified and
the corresponding driver routines are not editable.

Common Commands definition. The list of Common Commands is fixed. All of the com-
mands with their parameters which are defined by the IEEE 488.2 standard are already in
the list. There are 41 commands but only 13 are implemented in VXI-IC. These 13 commands
are defined as obligatory in the IEEE 488.2 specification. They are executed by the VXI-IC
driver. The rest are the optional commands. In order to implement one of the optional com-
mands the developer needs only to check the corresponding box in column ID (right side of
figure 6.12). In order to remove one of the Common Commands from the project, it must
be only unchecked. It is not possible to uncheck an obligatory Common Command. The text
editor with the corresponding device driver routine is available under the context menu of each
command, see section 6.2.2.

SCPI trees definition. The elements in black in the SCPI trees are commands defined by
the developer. The definition of a new SCPI command is performed by building the tree node
by node. All editing options for the SCPI trees are available in the context menu. Adding
a new node/leaf is performed by clicking the right mouse button on the preceding tree element
and choosing an appropriate action such as: add next, add child, change or remove. These
four options cover all editing possibilities for the SCPI structure. The VXI-SDK takes care of
the syntactical coherence of the SCPI trees. For example, the node can’t be left without a leaf,
because only nodes with leaves at the end form the complete commands.

The definition of each element of the SCPI tree is done in a separate window where all

82



Figure 6.12: Main window of VXI-SDK

information must be provided by the developer. Figure 6.13 presents the window with param-
eters of the SCPI command element.

The presented window permits the definition of both a node and a leaf of the SCPI com-
mand. On the left side of the window, several options of the command element can be deter-
mined. On the right side is a panel where command parameters can be defined. The parameters
panel appears only when the Parameters checkbox on the left side is marked. Depending on
the parameter type chosen on the right side different configuration options appear below, which
characterize specific features of the parameter. When the command element is fully defined
the developer needs to save it. The command definition window then disappears and the de-
fined element is shown in the SCPI tree structure. All details concerning SCPI commands and
definition of parameters are in appendix D.16.

The SCPI trees defined in VXI-SDK are automatically checked according to the IEEE 488.2
syntax. But the final proof of syntax correctness comes from the parser in VXI-IC.
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Figure 6.13: SCPI command and parameters definition

6.2.2 Writing a Device Driver

The main advantage of VXI-MBT is that the developer can write a device driver which is
complementary to the device-specific SCPI commands. Each device-specific SCPI command
is associated with one device driver routine. The routine declaration is generated automatically
when the new SCPI command is defined. There is an option edit driver in the context menu of
the SCPI command. This option opens the editor window presented in figure 6.14.

The declaration of the device driver routine includes the routine name and its arguments.
The first argument is a pointer to a list of the optional parameters of the parsed command,
the second argument is a pointer to a list of the optional suffixes which were found in the parsed
command. The body of the routine is empty by default and is filled out by the developer.
The source code of the device driver routines is written in C.

Several built-in C routines are implemented in the VXI-IC firmware. These routines can be
used by the developer to get access to various functionality of VXI-IC such as device interface,
interrupt requester, VME master component, error queue, etc. All these functions are listed in
appendix D.17 and explained in different sections of the dissertation.

When all routines have been written, the developer needs to compile the device driver.
The compilation command is available in the Project menu. The VXI-SDK gathers all the de-
vice driver routines, creates a make file, and executes it in a separate command window. The re-
sult of the compilation is printed in the command window, so that the developer can read mes-
sages generated by the compiler. After successful compilation, the binary file is ready to be
uploaded to VXI-IC.

User entry routines. There are also several so-called user entry routines which are built
into the VXI-IC firmware. Unlike the device driver routines associated with device-specific
SCPI commands, the user entry routines are called by the VXI-IC firmware when a certain
event occurs. They are empty by default. The goal of these routines is to give the developer
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Figure 6.14: Edition Window for a Device Driver Routine

the possibility to write custom C code to react properly to special events. The content of these
routines is developer dependent. The following user entry routines are available for the devel-
oper:

• Service request interrupt handler — this routine is called when the user device generates
an interrupt. This routine is useful for the formatter when a response data is returned
by a command which is executed in an overlapped mode. The command execution in
the overlapped mode is described in section 6.1.3.3.

• Trigger interrupt handler — the routine is called when a trigger is detected by the VXI-IC.
The source of the trigger can be: TTLTRG lines, ECLTRG lines, or a WSP Trigger com-
mand. The developer can precisely determine the trigger source by reading the appropri-
ate working register of VXI-IC. The triggers handling procedure is described in appendix
D.18.

• Device initialization routine — this routine is called when the VXI-IC is in the initializa-
tion process. The user device may need to be initialized when the VXI-IC is initialized.
Using this routine the developer can write his code for the user device initialization.
The precise point of calling the routine in the VXI-IC initialization process is described
in section 6.1.3.9.
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• LBUSx interrupt handler — this routines is called when a signal level transition is de-
tected on a selected line of the LBUSA or LBUSB on the VXI chassis backplane. The rou-
tine allows a proper reaction of VXI-IC on an action initiated by an adjacent VXI module.
The details of the LBUSx programming are in appendix D.12.

• Common Commands user routines — there are three Common Commands, *CLS, *RST,
and *TST?, of the 13 implemented in VXI-IC which have user entry routines associated
with them. These commands also contain associated VXI-IC driver routines which per-
form actions related to the VXI-IC functionality. Nevertheless, the developer may want
to add to these commands some actions related to his device. In this case he can write his
source code in these user routines. More details are in appendix D.1.

6.2.3 User Errors Mechanism

VXI-IC contains the obligatory status reporting structure defined by the IEEE 488.2 standard
and SCPI specification. Both structures are presented in appendix D.11. The SCPI compliant
structure includes the questionable status register, the operation status register, and the er-
ror/event queue. The last is used for reporting any error or event in the VXI/SCPI device.
The code of an event/error is put in the error/event queue when an exception takes place in
the VXI-IC. The parser, formatter, or VXI-IC driver can generate an event/error. The device
driver is also able to insert an event/error code. The device developer needs to use a C function
named

int addErrorToQueue(int errNumber)

with the event/error code passed as a parameter.

The control software can read the event/error codes and corresponding messages using a set
of obligatory SCPI commands. Each VXI/SCPI device must implement the following SCPI
commands from the :SYSTem:ERRor subsystem:

:SYSTem
:ERRor

:ALL?
:CODE

:ALL?
[:NEXT]?

:COUNt?
[:NEXT]?

This subsystem consists of SCPI commands and queries used for control of the error/event
queue. When the control software sends the query :SYSTem:ERRor:NEXT?, VXI-IC sends
back a response which consists of the numeric value of the error followed by a comma and
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the quoted error message. When no error has occurred, the zero value is returned and the re-
sponse looks like 0, "No error". When an error is reported, the non-zero value and
the matching message is returned e.g. -100, “Command error”. The meanings of other
SCPI commands and queries are precisely defined in the SCPI specification in chapter 21.8.

The error/event code is an integer number in the range from -32768 to 32767. All negative
numbers are reserved for the SCPI standard but until now only a few tens of them are used. All
errors defined in the SCPI specification are included in VXI-IC. The range of positive error
numbers is reserved for developers. A few of the positive numbers have been already used
for custom functionality of VXI-IC. The rest are left for the device developer. The developer
can define a custom error and an associated message. Figure 6.15 presents the VXI-SDK
window in which the errors/events and their messages are defined. Blue entries are the non-

Figure 6.15: User Errors Definition Window in VXI-SDK

editable errors defined by the SCPI specification. All other errors can be modified and removed,
or new ones can be defined in this window. When the list is complete, VXI-SDK generates
the error.txt file and uploads it to VXI-IC. When VXI-IC boots up, it loads all errors from
the file into a static array in the program memory. This file is automatically added by VXI-SDK
to every new project with all pre-defined SCPI and VXI-IC errors. The device developer can
use the newly defined error/event codes in the device driver for his specific needs.
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6.2.4 VXI-IC Configuration Options

There are several options of VXI-IC which can be configured in VXI-SDK. The VXI-IC config-
uration window is presented in figure 6.16. The advantage of this window is that the developer
can choose only the allowed combination of coupled parameters.

Figure 6.16: VXI Interface Configuration Window

The details of the configuration parameters are described in appendix D.4.2. The most
important feature is that the device interface can be quickly configured. As described in sec-
tion 6.1.3.5, there are two operation modes of the interface. In the general purpose I/O mode,
the developer can choose which groups of I/O lines should be enabled by selecting the appro-
priate checkboxes. The in/out buttons allow changing the direction of the selected buffers. In
the local bus mode there is nothing to be configured because the assignment and meaning of
the I/O lines is strictly defined by the local bus protocol, as described in appendix D.5.3.2.

The Direct Memory Access section allows enabling access from the VXI bus to the user
device in a direct memory access mode, see appendix D.13. The required address space and
the required memory size, in case of A16/A24 or A16/A32 address space, must be chosen.

The Device Identification section contains parameters which identify the device manufac-
turer and the device model code. The developer is free to set these to any value. These parame-
ters together with the direct memory access parameters, are loaded by the bootloader program
to the VXI configuration registers during initialization process of VXI-IC, as described in sec-
tion 6.1.3.9. In addition, the developer can define an identification string which VXI-IC returns
when the *IDN? command is received.
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6.2.5 VXI-IC Configuration Files Generation and Upload

All files generated as output of the configuration processes described in the preceding sections
must be uploaded to VXI-IC. There are two methods of uploading the configuration files to
the CF card. Both methods are described in section 6.1.3.8. This section briefly describes
the VXI-SDK window which is used to establish a connection with VXI-IC and to upload
the configuration files. The window is presented in figure 6.17.

Figure 6.17: VXI Interface Configuration Window

First of all, the communication between VXI-SDK and VXI-IC must be established. Usage
of the VISA library, installed in the same computer as VXI-SDK, is required. In the Device
Connection window, the user needs to choose the computer interface to which the VXI chassis
is connected. Depending on the interface type, various fields appear below in order to specify
precisely the device address in the VXI system. Finally, VXI-SDK constructs a connection
string based on the input data — the blue string in figure 6.17. The connection string is exactly
the same as that produced by the Agilent I/O Connection Expert for the device connection.
The Agilent I/O Connection Expert is a graphical program which helps to establish communi-
cation with VXI devices using the VISA library. After pushing the button Connect VXI-SDK
tries to connect to VXI-IC. If the connection has been established, an appropriate message
is displayed in the text field. To be sure that the VX-SDK is connected to the right device,
the *IDN? command can be issued to receive the identification string from VXI-IC.

When the connection has been established, the developer can upload configuration files
by pushing buttons in the VXI-IC Configuration frame. When all configuration files have been
uploaded successfully, the VXI-IC must be restarted using the :DIAG:BOOT command, which
is sent to the VXI-IC by pushing the corresponding button.
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6.3 Realization Summary

The implemented tool fulfills all requirements itemized in chapter 4.2. VXI-SDK supports
VXI-IC with a user-friendly graphical interface for configuration. VXI-MBT offers great flex-
ibility and configurability to the device developer such as:

• Full customization of SCPI trees. The device designer can put into practice any known
SCPI command [17] as well as new ones specific to the developed device [63]. This
statement is also true for the command parameters.

• Parsing of SCPI commands in VXI-IC. The parser analyses the syntax of every Com-
mon Command [7], obligatory, and specific SCPI command according to the IEEE 488.2
syntax. The device designer has nothing to do here. After successful interpretation of
an incoming command, the parser returns its code together with the list of corresponding
parameters in the format understood by the device driver.

• A programmatic skeleton for development of the device drivers. The device driver exe-
cutes the associated device-specific SCPI commands. The device developer can use many
built-in C routines and can access all VXI-IC working registers from the device driver.
It operates both on the VXI-IC registers and on the working registers of the user device.
The programmatic skeleton also contains several empty, pre-defined user entry routines.
They allow, in a simple way, modifications or extensions of the VXI-IC basic functional-
ity. The user interrupt handler routines allow the developer to program fast reactions to
asynchronous events and signals detected in VXI-IC as well as in the user device.

• Configurable trigger subsystem. The eight TTLTRG and two ECLTRG signals can be
received by VXI-IC and/or the user device. VXI-IC can also drive these lines. Based
on the basic functionality of the ARM-TRIGGer model implemented in VXI-IC, the de-
veloper may extend the trigger subsystem by adding new SCPI commands and by using
the dedicated user entry routines.

• Two operation modes of the device interface. Depending on the user device complexity,
the interface can be configured as simple general purpose I/O lines, or as a local bus
directly connected to PowerPC. In both cases, the developer is able to control the device
interface from the device driver.

The VXI-MBT is a mixture of hardware, firmware and software. The package contains
VXI-IC and a CD-ROM with the installation software for VXI-MBT. Prior to the installation
of VXI-MBT, the developer needs to install the VISA libraries and the gcc compiler. Both are
available in the public domain.
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However, the successful implementation of VXI-MBT also has some disadvantages, namely:

• VME cards can’t be directly connected to the device interface; three lines important for
the VME bus in the device interface are missing. The consequence is that the VME bus
protocol cannot be implemented in the device interface. These lines were not foreseen in
the first version of the VXI-IC prototype, however, they could be easily added in the next
version of VXI-IC.

• The high flexibility and configurability of VXI-IC increases the likelihood of malfunction
in the device driver routines and finally malfunction of VXI-IC. The developer must write
the device driver carefully.
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7

VXI-MBT Application

VXI-MBT has been used in several applications in order to prove its universality. This chapter
presents only the most complex application, which makes use of most of the VXI-MBT fea-
tures. The test presented was performed for the Free Electron Laser at Hamburg (FLASH) at
Deutsches Elektronen-Synchrotron (DESY). FLASH is a linear accelerator based on supercon-
ducting accelerating cavities built of niobium [64]. It is a user facility as well as a prototype
for the larger X-ray Free Electron Laser (XFEL) accelerator now under construction. The con-
troller is a part of a measurement and control VME system that controls the first module of
FLASH. The existing VME card was converted into a VXI message-based device with the
same functionality.

7.1 RF-Gun Controller for FLASH Accelerator at DESY

The first accelerating module of FLASH is the RF-Gun. The RF-Gun facility is presented in
figure 7.1. It consists of a copper cavity with a photocathode inside. It is cooled by water. On
exposure of the cathode to the laser light, electrons are emitted. They are immediately accel-
erated by the strong electric field inside the cavity (about 40MV/m) and injected into the next
module of FLASH. The cavity is powered at 1.3 GHz by a 5MW klystron. Forward and re-
flected power signals from a directional coupler in front of the cavity are used for indirect
measurement of the field inside the cavity (power_forward minus power_reflected). The for-
ward and reflected power is converted in analog IQ detectors into In-phase and Quadrature (IQ)
components of the field vectors. The amplitude and phase of the field in the RF-Gun is con-
trolled indirectly by controlling the I and Q components — so-called IQ control. The controller
output, also I and Q signals, modulate in an analog vector modulator the amplitude and phase
of a 1.3GHz signal which is fed into the klystron.

Electron bunch trains with very stable energy and timing are required for proper operation
of FLASH, hence the RF-Gun controller is responsible for field regulation inside the cavity
with a phase precision below 0.5 degree. The controller is implemented on a new FPGA based
board called SIMCON 3.1 [65]. The board includes A/D and D/A converters for interfacing
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Figure 7.1: Block Diagram of RF-Gun Facility at FLASH

analog signals from and to the RF-Gun. A small Altera FPGA chip provides the VME interface,
and a large Xilinx Virtex II Pro FPGA is used for implementation of control algorithms. Figure
7.2 presents a simplified block diagram of the firmware inside the Virtex FPGA.

The RF-Gun measurement and control algorithms are implemented in VHDL [63]. The al-
gorithms work in a computation pipeline clocked by a local 50MHz oscillator. The analog input
forward and reflected power signals are converted by ADCs and conditioned inside the FPGA.
The conditioning includes offset compensation of A/D converters, amplitude scaling, and com-
pensation of non-linearity of the analog I/Q detectors. In the next stage the forward and re-
flected power vectors are rotated in rotation matrices in order to compensate phase shifts in
cables. After adjustment of the phases, the field in the cavity is calculated. The field signal
is used in the next stage for the field error calculation. The calculated field is subtracted from
the reference set point table which is in the FPGA. The filtered error signal is used by the PI
controller (proportional feedback and integrator) in a fast feedback loop. In the next stage
the control signal is added to a simple feed forward table and to a feed forward correction table.
At the very end, the output control signal is summed up with a constant scalar value which
is used to compensate the input offset of the analog vector modulator. In addition to the fast
feedback loop, an Adaptive Feed Forward (AFF) algorithm is also implemented. The AFF al-
gorithm is responsible for correction of repetitive field errors [66]. It is an iterative algorithm.
One iteration is performed between subsequent pulses of the FLASH operation (the so-called
RF pulse). The correction feed forward table, which is calculated by the AFF algorithm, is
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Figure 7.2: Block Diagram of RF-Gun Controller Firmware

added to the simple feed forward table and finally to the output control signal of the RF-Gun
controller.

All of the VHDL components are synchronized by an external trigger signal provided
through a separate digital input. The firmware components are configurable — 78 read and
write working registers enable control and provide status information. There is also a Data
Acquisition (DAQ) subsystem which consists of 20 memory blocks synthesized from RAM
blocks in the FPGA, 1024 words per memory. The DAQ system records signals from the inter-
nal structure of the FPGA at 1MHz frequency during the operation pulse. After the RF pulse, all
working registers and DAQ memories are available for readout to the control software through
the VME interface.

FLASH works in a pulsed mode at a variable repetition rate from 1 to 10Hz. Each RF
pulse lasts approximately 1ms and during the pulse up to 800 bunches of electrons with 1µs
bunch spacing are accelerated. Figure 7.3 presents one cycle of the RF-Gun operation. When
the trigger signal comes from the synchronization system, it indicates that the RF pulse has
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started. It lasts 1024µs. During the RF pulse, energy is loaded into the cavity and then RF-Gun
controller stabilizes the amplitude and phase of the field. The dashed line in figure 7.3 presents
shape of the field amplitude in the cavity. The bunches of electrons are emitted when the field is
stable. After the beam has been injected the cavity is discharged what is presented in the figure
as a field decay. During the RF pulse, the controller records several signals and stores them
in the DAQ subsystem. When the RF pulse is finished, the controller generates an interrupt
to notify the control software that the DAQ data is ready. An interrupt handler routine in
the control software immediately reads data from the DAQ. The DAQ readout must be finished
before the trigger signal for the next RF pulse comes.

7.2 Adaptation of the RF-Gun Controller to VXI Systems

As was already mentioned, the existing RF-Gun controller works in a VME system. The left
side of figure 7.4 presents hardware and software of the existing setup. The SIMCON board is
installed in a VME crate. The crate is controlled by an embedded computer installed in the slot
1. This is a SUN machine with Solaris OS. The SIMCON driver runs on this computer and it
communicates through the VME bus with working registers of the SIMCON board by exchang-
ing binary data. Remote control of the RF-Gun controller is enabled by a server application
running on the SUN machine which allows remote execution of the SIMCON driver routines.
The user interacts with the client application which communicates with the server application
over Ethernet.

The VXI version of the RF-Gun controller is presented on the right side of figure 7.4.
A VXI module consisting of the SIMCON board and VXI-IC is installed in a VXI chassis.
No embedded computer is required in this setup, only a VXI controller with a LAN interface
on the front panel, which is installed in the slot 0. Unlike the VME version, the SIMCON
SCPI driver is embedded in VXI-IC. The driver exchanges binary data with working registers
of the RF-Gun controller. Instead of the client-server program in the VME version, a user
program in the remote computer communicates directly with VXI-IC using the VISA library.
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The user program exchanges SCPI messages with the SCPI driver in VXI-IC.

The general concept of the RF-Gun controller implementation in a VXI system is presented
in figure 7.5. There are four major features of VXI-MBT that are involved in adaptation of
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Figure 7.5: Concept of RF-Gun controller adaptation using VXI-MBT
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the RF-Gun controller:

• SCPI driver, consisting of the definitions of specific SCPI trees which reflect the RF-Gun
controller functionality, and the device driver, which has similar functionality to the SIM-
CON driver running in the SUN machine of the VME version. Together they are called
SIMCON SCPI driver.

• The trigger subsystem, for which the trigger signal doesn’t need to be connected to
the front panel of the SIMCON board as in the VME version. Only a single trigger cable
is connected to the front panel of the VXI controller. The trigger signal is distributed to all
modules (including SIMCON board) over the backplane in the VXI chassis. The trigger
signal tells the SIMCON board and SIMCON SCPI driver that the RF pulse has started.

• The interrupt requester, used by the SIMCON SCPI driver to notify the user program
that the RF pulse has finished and the data recorded in DAQ system is ready. The user
program invokes an interrupt handler that reads data from DAQ.

• The direct memory access mechanism, used to transfer large amounts of data from
the DAQ system to the user program. The data is transferred in binary mode.

The following sections present how the VXI-MBT features were used. The overall process
of the RF-Gun controller adaptation was performed according to the development algorithm
described in section 5.3.

7.2.1 Mechanical and Electrical Assembly

First of all, adaptation of the RF-Gun controller requires physical assembly of the SIMCON
and VXI-IC boards. Figure 7.6 shows how it is done. The SIMCON card contains two VME
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Figure 7.6: Physical Assembly of the VXI-IC and SIMCON Boards

connectors P1 and P2 which connect to the VME bus. Originally the VME bus interface was
implemented in an Altera FPGA, which was a bridge between the VME bus and the local bus
of the Xilinx FPGA in SIMCON.
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In the VXI version, the Altera FPGA firmware is reprogrammed to provide only a bridge
between the local bus in VXI-IC and the local bus in the Xilinx FPGA of the SIMCON board.
The VXI-IC device interface was configured to the local bus mode. The Altera firmware also
contains trigger and interrupt lines for interconnections between the Xilinx and the P1 connec-
tor of SIMCON. Since the VXI-IC has only one 96-pin user connector, J1, the SIMCON board
was connected only to the P1 connector. A picture of the physical assembly is presented in
figure 7.7.

Figure 7.7: Picture of the Physical Assembly of the VXI-IC and SIMCON Boards

7.2.2 SCPI Driver for the RF-Gun Controller

The SCPI trees created for the RF-Gun controller cover its entire functionality except for the
DAQ system. All software included in the existing SIMCON driver, which runs in a VME
system, was moved to the SIMCON SCPI driver located in VXI-IC. Figure 7.8 once again
presents the RF-Gun controller algorithms which are enclosed in five red areas. These red
areas correspond to five SCPI trees which were defined for the controller.

99



Non-orthogonality
compensation

FF/SP
Table

Feedback Gain
GAIN

Offset
Scaling

Full Rotation Matrix

Timming & Control
Module

x
IIR

Integrator
Gain

x∫∫∫∫

Offset
Scaling

Offset
Scaling

Offset
Scaling

Non-orthogonality
compensation

Full Rotation MatrixOffset

Decimation 1:50

Error Signal
Memory

FF Correction
Memory

Correction Table 
Accumulation

FIR AFF

DAQ System – 20 signals, 1024 words each, 18-bis word

VME

ΣΣΣΣ

ΣΣΣΣ

Delay

ΣΣΣΣΣΣΣΣ

OUTPut

CONTrol
CALCulate

INPut

TRIGger

Amp. limiter
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The complete list of the SCPI commands contains 34 leaves. The SCPI commands defined
for the RF-Gun controller are listed below. There is no room in this document to describe every
command in detail; only a short comment is attached to each one. Each SCPI message is both
a command and a query. All of these SCPI trees are defined graphically in VXI-SDK. Most of
the defined SCPI commands correspond to parameters which are available to the operators on
the control panels in existing control software. For example, a command :CONT:SETP:AMPL
5 is equivalent to an action in which the operator sets the set point amplitude to 5. All other
commands are defined in a similar way — the operator who uses the commands immediately
knows what they are for, however, there are several advanced SCPI commands which are only
used by experts and whose meaning doesn’t need to be understandable for every user. Each
SCPI command (each leaf of the tree) is associated with the driver routine. All details concern-
ing programming of the RF-Gun controller working registers are hidden there. The details of
the SIMCON driver are not explained in this document due to its high complexity.

List of SCPI commands specific for the RF-Gun controller:

:INPut
:ENABle <boolean> - turn on/off ADCs
:ADC[1..4] - the numerical suffix selects ADC

:OFFSet <NR1> - compensates ADC offset by NR1
:GAIN <NR2> - scales signal from ADC in range

:CALCulate
:CHANnel[1..2] - 1-forward power, 2-reflected power

:PHASe <NR2> - phase of rotation matrix in degrees

100



:OPHase <NR2> - non-orthogonality phase correction
:FILTer <NR1> - corner frequency of the IIR filter

for error signal
:CONTrol

:SETPoint - set point table parameters
:AMPLitude <NR2> - amplitude of set point table in MW
:PHASe <NR2> - phase of set point table in degress
:TIME - set point table timing parameters

:FILLing <NR1> - length of filling time
in microseconds

:FLATtop <NR1> - flat top time length in microseconds
:DECay <NR1> - decay time length in microseconds

:DELay <NR1> - delays set point against feed
forward table

:FFORward
:ENABle <boolean> - enables feed forward table

:FBACk - proportional controller parameters
:GAIN <NR2> - gain of proportional controller

in arbitrary units
:ENABle <boolean> - enables feedback

:INTegrator - integrator parameters
:GAIN <NR2> - gain of integrator
:ENABle >NR2> - enables integrator

:AFForward
:TCONstant <NR2> - cavity time constant
:GAIN <NR2> - speed of adaptation
:FILTer <NR1> - corner frequency of FIR filter

for correction signal
:ENABle <boolean> - AFF enabled
:MODE INFinite|STEPs - mode of operation
:TRANGe

:STARt <NR1> - start of operation
:STOP <NR1> - stop of operation
:DELay <NR1> - delay of correction table

:OUTPut
:ENABle <boolean> - AFF output enabled

:SMODe - switching mode of AFF and feedback
:ENABle <boolean> - switching mode enabled
:GSTeps <NR1> - number of feedback steps
:AFFSteps <NR1> - number of AFF steps

:OUTPut
:DAC[1..2] - the numerical suffix selects DAC

:OFFSet <NR1> - sets offset of DAC, that
compensates offset
of vector modulator

:ALIMit - amplitude limiter parameters
:ENABle <boolean> - enables amplitude limiter of

control signal

101



:AMPLitude <NR2> - sets amplitude limit
:TRIGger

[:SEQuence[1..2]]
:SOURce EXTernal|INTernal|TTLTrg[0..7] - selects source

of trigger signal
:TIMer <NR1> - sets frequency in Hz of internal

trigger generated by timer
:DELay <NR1> - trigger pulse delay in microseconds

The implemented SIMCON SCPI driver has several advantages. One of them is reduced
traffic on the VXI bus compared to the VME version. For example, the RF-Gun controller
contains 3 pairs of control tables which store imaginary and quadrature parts of the control
signals, including the set point, feed forward, and proportional gain and integrator gain tables,
see figure 7.8. In the VME-based version these tables were calculated by the SIMCON driver
in the embedded SUN, see figure 7.4. When one of the control parameters has such as the
amplitude or phase changed, the tables were recalculated in the SIMCON driver and sent to
the SIMCON board through the VME bus. Since each control table has 2048 elements, each
change of the amplitude or phase by the user resulted in transmission at least of 2048 words
on the VME bus. For VXI-IC, the user program only needs to send a single SCPI message
with the new amplitude or phase value, e.g. :CONT:SETP:AMPL 10 for set point amplitude,
or :CONT:SETP:PHAS 130 for set point phase. The SIMCON SCPI driver receives these
commands and calculates new control tables locally and writes them to the SIMCON board
through the local bus. After the SCPI command has been sent by the user program, the VXI
bus is released. The calculation of new control tables is done by the SIMCON SCPI driver in
parallel to other activities which may take place on the VXI bus.

The other advantages of the SIMCON SCPI driver are described in the following sections.

7.2.3 Application of the Trigger Subsystem

Originally the trigger signal was connected to the front panel of the SIMCON board and to
every other board installed in the VME crate. Each of these boards has a separate digital input
for the trigger signal. For the VXI chassis, the trigger signal needs to be connected only to
the VXI controller located in the slot 0. The trigger signal is distributed on the VXI backplane
to all other modules in the same chassis. VXI-IC provides the trigger signal from the VXI
backplane to the SIMCON board through the device interface. Nevertheless, the other sources
of the trigger signal for the SIMCON board can still be used, as explained below.

The specific SCPI commands related to the trigger subsystem are repeated here once again
because they require a separate explanation:

:TRIGger

[:SEQuence[1..2]]

:SOURce EXTernal|INTernal|TTLTrg[0..7]
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:TIMer <NR1>

:DELay <NR1>

As the parameters of the command :TRIGger:SEQuence:SOURce show, three sources
of the trigger signal are possible:

• INTernal — the internal trigger is used in a laboratory environment when the exter-
nal trigger is not provided. The internal trigger is generated by a local timer located
inside the Synchronization Module, see figure 7.8. The :TRIG:SEQ:TIM <freq>

command sets the frequency of this trigger in units of Hertz.

• TTLTRG[0..7] — the external trigger from the synchronization system of FLASH
is connected to the VXI controller. This trigger is distributed on the VXI backplane to
the SIMCON board. The parameter suffix selects which trigger line is used by the VXI-IC.

• EXTernal — choosing this option gives the possibility of using the trigger signal di-
rectly connected to the SIMCON front panel as it was done in the VME version.

As was explained in section 6.1.3.6, when the trigger signal comes to VXI-IC, the PowerPC
interrupt is generated and the user interrupt handler routine is launched. In this case, the routine
sets the flag Pending RF pulse which tells the SIMCON SCPI driver that no action can be
taken on the working registers of the RF-Gun controller during the RF pulse — the operating
conditions of the RF-Gun controller must not changed during the RF pulse [67].

For the case of the external trigger (TTLTRG or EXTernal), it is necessary to delay the trig-
ger pulse in order to be synchronized with other components of FLASH. The trigger pulse can
be delayed by several microseconds using the command :TRIG:SEQ:DEL <µs>.

7.2.4 Interrupt Generation and Handling

The RF-Gun controller in the VME version generates interrupts on the VME bus when the RF
pulse is finished. These interrupts indicate that the data recorded during the RF pulse in
the DAQ system is ready to be read. The interrupt notifies the SIMCON driver in the SUN
machine and an appropriate interrupt handler routine is called. This routine reads the data from
the DAQ system through the VME bus and makes it available to the server application, left side
of figure 7.4.

The SIMCON board cannot generate an interrupt directly on the VXI bus because it is not
connected to it. The VXI-IC also doesn’t allow for direct access from the SIMCON board to
the VXI interrupts. There is only one interrupt line wired from the SIMCON board to PowerPC
in VXI-IC, as presented in figure 7.9. When this line is asserted by SIMCON, an interrupt
is generated in the PowerPC. As was already explained, a special interrupt handler routine,
which is empty by default, is launched in PowerPC. The routine can be filled out by the device
developer in VXI-SDK. In this example the routine generates an interrupt on the VXI bus.
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Figure 7.9: Configuration of Interrupts for RF-Gun Controller

The interrupt handler in the PowerPC writes a Status Byte to the VME interrupt requester
register and stimulates it to generate an interrupt on the VXI bus by asserting the VXI Int line.
The detailed description of the C routines for interrupt requester operation is in appendix D.8.

During the interrupt acknowledge process on the VXI bus, the VXI controller reads the Sta-

tus Byte and returns it to the control software. In this particular case, the user program is
notified through the mechanisms of the VISA library. A special routine in the user program
reads the data from the DAQ memories.

7.2.5 Direct Access to DAQ Subsystem in RF-Gun Controller

As was described previously, the working registers are read and written from VXI-IC by the de-
vice driver routines. Besides the working registers, the RF-Gun controller contains a DAQ
system with 20 memory blocks inside, see fig. 7.2. The blocks are used for recording sig-
nals from the internal structure of the controller during the RF pulse, and after the pulse they
are read only. One can imagine that readout of the memory could be performed by a SCPI
command. The readout of one block would return a vector of 1024 numbers formatted in one
long response string. The problem is that the readout of 20 block would take a long time due
to overhead related to the conversion of scalar values to strings in VXI-IC formatter and later
reverse conversion from strings to numbers in the control software. In order to bypass this
problem, direct memory access was implemented in VXI-IC. According to the VXI specifi-
cation the configuration and communication registers of VXI-IC are accessible in A16/D16
mode on the VXI bus, but the working registers of SIMCON are not available on the VXI bus.
The direct memory mechanism allows mapping a portion of the SIMCON address space di-
rectly to the A24 or A32 address space on the VXI bus. The block diagram of the implemented
mechanism is presented in figure 7.10.

According to the VXI specification, during the VXI system initialization process the VXI-IC
requests address space, in an amount set by the user in the configuration registers of VXI-IC
using VXI-SDK. The VXI controller allocates the requested address space by writing the base
address of that space to the configuration register in VXI-IC. VXI-IC automatically maps
the base address of the DAQ memories in the context of the local bus to the base address previ-
ously assigned. From that moment on, the address detector makes the VME slave active when
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the DAQ readout is requested from the VXI bus. Since the VME slave component and PowerPC
are masters to SIMCON in context of the local bus communication, an arbitration mechanism
must be applied. The local bus arbiter takes control when both the PowerPC and the VXI
Slave request access to SIMCON. The PowerPC has higher priority since the communication
is faster and shorter due to single reads and writes. However, if the access from the VXI bus to
SIMCON is blocked for longer time than the VME bus timeout, the RETRY* signal on the bus
is asserted. The data bus between SIMCON and VXI-IC is 16 bits wide; only A24/D16 or
A32/D16 access from the VXI bus is possible. Direct access to the memory area in SIMCON
significantly speeds up the readout of large amounts of data from the SIMCON DAQ system.
This is especially true for block transfers on the VXI bus.

7.3 Application Tests and Summary

The RF-Gun controller has been tested in a laboratory environment. A laboratory function
generator was connected to the trigger input in the VXI controller and distributed on the VXI
backplane to the RF-Gun controller. The external trigger signal was generated in this func-
tion generator. Figure 7.11 presents a picture of the development setup for the RF-Gun con-
troller. The VXI controller used in the experiment (Agilent E1406A) has no Ethernet socket on
the front panel. It has only a GPIB interface, for which a GPIB/LAN converter was used.

Figure 7.12 presents the control panel of the user program. This panel is very similar to
the existing one now used at FLASH. Preparation of such panels is relatively simple. Most
of the parameters located on the graphical panel relate to single SCPI commands defined for
the RF-Gun controller. When the value of a parameter is changed, the SCPI command string
is formulated and sent through the VISA library directly to the VXI-IC. The plots visible on
the right side of the panel are read using direct memory access. Due to limitations of the Visual
Basic 6.0 language, the interrupts generated by the RF-Gun controller are detected by the user
program in a queuing mode [37].
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Figure 7.11: A Picture of the Development Setup for the RF-Gun Controller

Figure 7.12: Panel of the User Program for RF-Gun Controller

The entire functionality of the RF-Gun was successfully tested. The RF-Gun controller is
ready for experimental use in FLASH.
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8

Conclusion and Hints for Successors

8.1 Conclusions

The VXI-MBT opens new possibilities for implementation of VXI message-based devices.
A designer may easily integrate his specific electronics with other VXI devices in a reasonable
time. The following advantages make the usage of VXI-MBT attractive:

• short implementation time from specific electronics concept to 100% VXI message-based
device,

• full customization of SCPI trees,

• open source code of the device driver for device-specific SCPI commands,

• available user entry routines for interrupt handling and VXI-IC configuration,

• built-in implementations of obligatory IEEE 488.2 Common Commands, obligatory SCPI
commands and several others executed by the VXI-IC,

• independence from software solutions such as C-SCPI or I-SCPI, which have been dis-
continued, and insensitivity to commercial driver concepts such as VXIplug&play or IVI,

• distribution of the system intelligence among particular devices, with each message-
based device able to process SCPI commands locally in a concurrent mode, thus reducing
the load on the central computer or command module,

• a development stage for message-based devices which can be separated from the appli-
cation stage.

Unfortunately, besides a number of advantages the potential user needs to be aware of
several disadvantages:

• message-based devices are in general slower than register-based, however, the computa-
tion overhead in a PC for a pseudo message-based device is also significant,
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• the hardware resources required for implementation of the SCPI parser and decoder are
more expensive than implementation of equivalent software in a computer.

8.2 Universality of IEEE 488.2 and SCPI — Toward LXI

The presented tool is designed for message-based devices in the VXI standard. That was
the most natural implementation due to the clear definition of the VXI device compliant to
the IEEE 488.2 standard. The implemented message exchange control interface and mes-
sage exchange protocol originate from IEEE 488.2 based on the IEEE 488.1 bus. But one
can imagine implementation of message-based devices in other standards such as PXI or LXI.
Both are standards for instrumentation, and both implement a kind of hardware trigger bus.
The PXI standard doesn’t define a message-based device; aside from a few obligatory con-
figuration registers, the communication protocol is device dependent in the PXI standard. In
some applications, a PXI device could communicate using SCPI messages. The LXI standard
includes rule 10.1 which says that VXI-11 protocol shall be supported by all LXI devices for
discovery purposes [26]. The derived rules say that each LXI device shall be able to respond to
the *IDN? IEEE 488.2 Common Command but all SCPI commands are optional. Nevertheless
such a device could also interpret any SCPI messages.

In order to develop a SCPI message-based device for PXI or LXI, one could use the VXI-MBT
implementation as a basis. In both cases the bus interface and the trigger control block would
have to be exchanged. Figure 8.1 presents once again the block diagram of the VXI-MBT
model with the blocks, which have to be exchanged marked, by a dashed rectangle.

VXI Interface
Fixed part

Message 
Exchange 

Control

Parser, Formatter of  IEEE 488.2 Syntax     
( Interprets                                     (Interprets

obligatory commands)            specific SCPI commands)�

Execution Control      
Tool Driver                                Device Driver

(Executes obligatory                 (Executes specific
commands)                            SCPI commands)�

Device Interface
(Physical                           ( Configurable

connector)                        specific protocol)       

Trigger Control
(Configurable)�

IC

User Device 

I/O Library

PC

SDK
-Trigger Control Configuration
- SCPI Trees Definition
- Source Code for Device Driver
- User Device Interface 
Configuration

IEEE 488.1, PXI, LXI

Figure 8.1: VXI-MBT for Alternative Instrumentation Buses

Of course, this requires modification of hardware, because the VXI interface would have to
be replaced by a PXI interface, or an Ethernet socket for LXI. In both cases, the interface to
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the trigger subsystem would also have to be modified due to electrical and logical differences.
Nevertheless, the presented realization of VXI-MBT could be an inspiration for further

development of message-based tools for measurement and control systems.
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Appendix A

VXI Form Factors
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Figure A.1: VME and VXI Form Factors
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Appendix B

Syntax of SCPI Messages

Regardless of its functionality, measurement devices perform some typical operations such as
conditioning of measured signal, analog to digital conversion, digital signal processing, presen-
tation of results, interfacing, storage of data, triggering and signal generation [68]. All these
operations are reflected by functional blocks of the signal model of a SCPI device in figure B.1.

ROUTe
input

INPut SENSe CALCulate FORMat

ROUTe
output

OUTput SOURce CALCulate FORMat

TRIGer MEMory DISPlay

Measurement Function

Signal Generation Function

Data
From Bus

Data 
to Bus

Signals
from UUT

Signals
to UUT

Figure B.1: Signal Model of a SCPI Device

In principle, there are two major blocks of a device: measurement functions and signal
generation functions. Depending on the device functionality both or one of them may be im-
plemented. The measurement part consists of the following blocks:

• INPut — The purpose of this block is conditioning of the input signals before they are
converted by the SENSe block. Conditioning may include amplification, attenuation,
linearization, filtering, frequency conversion, signal range adjustment, etc.

• SENSe — The SENSe block converts input signals into an internal data understandable
by further blocks. This is usually analog to digital conversion. Several parameters may
be controlled in this block such as resolution or sampling frequency.

119



• CALCulate — This digital block performs mathematical operations on the converted
data. The purpose of these calculations is to extract required information from measured
data, e.g. time and amplitude calculation from the waveform. This is a part of the device
where its intelligence exists. The measured data can be processed to shorter form which
may significantly reduce communication on a bus, e.g. singular rms value instead of
M-length record of samples.

Signal generation part consists of the following blocks:

• OUTput — This block is used for conditioning of signals generated by the device. This
block includes filtering, offsetting, power fitting, etc.

• SOURce — The SOURce block is responsible for generation of the output signals based
on parameters provided by the digital part of the device. This block may include digital
to analog converters. It is required for all source devices. It may include generator of
waves, patterns, impulses, etc.

• CALCulate — This block is used to convert an application data into parameters under-
standable for the SOURce block. Application parameters for waveforms generation may
be expressed in different domains and units. The intelligence of CALCulate block may
be used for generation of big amount of data from a few parameters. For example four
parameters is enough to generate any sine wave. This kind of operations reduce traffic
on a bus. The CALCulate block helps in decentralization of the system intelligence.

In addition each device must contain digital interface for exchanging messages and external
port for interacting with a unit under test (UUT):

• FORMat — This part of the device is responsible for message exchanging with user
applications. This is usually some sort of digital interface such as VXI, RS232 or GPIB.
This block is also used for data compression.

• ROUTe — is responsible for signal routing between UUT and measurement or genera-
tion part the SCPI device. This is an optional feature of the SCPI device. It is used where
routing between physical ports and internal functional blocks of the SCPI device is pro-
grammable. For example, a multimeter can be configured as voltmeter, current meter,
ohmmeter, frequency meter, power meter, etc.

There are also several common blocks both for signal measurement and generation. They are
optional, but when applied, may extend the SCPI device functionality:

• TRIGger — The purpose of this block is to provide a device with a synchronization
capability. The SOURce or SENSe blocks of the device can be synchronized by the com-
mands (software method) or by internal, external signals (hardware method). The TRIG-
ger block is responsible for proper configuration of the event sensors in order to receive
the synchronization signals.
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• MEMory — The MEMory block is usually used to record measured data until it may be
read by the user program. The MEMory block can be also used for storage of arbitrary
patterns which are used by the SOURce block.

• DISPlay — This block is used for presentation of measurement data in a textual or graph-
ical manner. The DISPlay may interact with the user to achieve appropriate presentation
of the data. The data manipulation by the DISPlay has no influence on data returned to
the user program.

Each block of the SCPI device model corresponds to a SCPI command subsystem. A SCPI
command consists of one or more elements called mnemonics. The mnemonic is represented
in a short or long version. Short version is written with capital letters and long one with small
letters. The subsequent series of the mnemonics form the SCPI command. The mnemonics
are separated by a colon. All mnemonics are grouped into trees. The command is created
starting in the root of the three and going down to one of the leaves. Figure B.2 presents
part of the TRIGger tree. A command in square brackets represents the default mnemonic on
a given level. The default node can be omitted while a command is constructed. For the SCPI
parser, the missing mnemonic in the command means the default one. At the given level of
a SCPI tree only one default command is allowed. If the command or mnemonic represent
an element of the device which has several physical instances then the numerical suffix is added
to the mnemonic. It is used for indexing of particular instances. The mnemonic SEQuence in
figure B.2 is an example of the default and multiple mnemonic.

:TRIGger

[:SEQuence[1..4]] :SOURce :TIMer

[:IMMediate] :LEVel :SIGNal

:AUTO

Figure B.2: Example of SCPI Tree

The SCPI command can be followed by one or more parameters separated from the com-
mand by a white space. The command parameters are separated from each other by comas.
There is no coma after the last parameter. SCPI uses parameter types defined by the IEEE
488.2 standard, such as characters, decimal numbers, boolean values, block of data, and ex-
pressions. In addition, the numeric values may be followed by units. The unit can consist of
a unit name and a multiplier which has impact on the preceding parameter value. The parame-
ters may be obligatory or optional; may appear zero, one or several times depend on how they
were defined.

Each SCPI command is simultaneously a query until it is stated differently in the command
definition. The query has the same form as the corresponding command but it is followed
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by a question mark. A device which interprets query must return a response to the control
software. The response is also precisely defined in the command definition.

The advantage of SCPI is that it is a “living” industrial standard. Additional commands will
always be needed to meet the requirements of new technologies and new devices. The SCPI
Consortium earlier, and IVI Foundation now, meets regularly to review new proposed com-
mands and to approve extensions to the last version of the SCPI specification. New commands
may be proposed by the members of the Consortium, and by other parties interested. Proposals
accepted by the Consortium are published and distributed to member companies and are avail-
able for the immediate use. Approved proposals are reviewed annually. After the annual review,
a new revision of the SCPI standard is published, and the commands become a permanent part
of the standard.

122



Appendix C

Model of IEEE 488.2 Device

This appendix presents concept of the device defined by the IEEE 488.2 standard. The two
figures below are replications of the original figures from the standard, but the IEEE 488.1
bus was replaced by the VXI bus. The I/O control block in both diagrams is a VXI interface.
The figure C.1 presents a general overview of a device status and message exchange.

I/O
Control

Message
Exchange
Interface

Status
Reporting

Device
Functions

VXI Bus

Device status

Status message

IEEE 488.1 STB,
IEEE 488.1 ist,
IEEE 488.2 reqt
and reqf
messages

IEEE 488.1
device –dependent
Messages and get

IEEE 488.1
remote
messages

Figure C.1: Device Status and Message Exchange Overview

Figure C.2 presents a message exchange control interface defined by IEEE 488.2. This
figure presents details of the message exchange interface component from figure C.1. This
kind of interface must be implemented in VXI message-based devices compliant with IEEE
488.2. The implementation of this interface definitely requires some kind of local intelligence
in the device. First of all, the complexity of the VXI message-based device interface is wrapped
in the small I/O control box in figure C.2. Several rules and conditions defined by the VXI
standard must be fullfiled concerning the bus communication, configuration and communica-
tion registers, device state, interrupts requesters and handling, triggering, etc. The second huge
challenge for the developer is implementation of the SCPI parser and response formatter. These
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two blocks must be able to fulfill syntax rules defined in IEEE 488.2. All of this must be man-
aged by the message exchange control which is driven by events. It must follow appropriate
state diagram in order to avoid deadlocks which lead to system failures.
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Figure C.2: Message Exchange Control Interface Functional Blocks
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Appendix D

VXI-MBT Features and Functionality

D.1 List of IEEE 488.2 Common Commands Supported by
VXI-MBT

The VXI-MBT implements by default only 13 obligatory IEEE 488.2 Common Commands
listed in table D.1. The commands are implemented according to the IEEE 488.2-1987 speci-
fication.

Mnemonic Description
*CLS Clear Status Command
*ESE Standard Event Status Enable Command
*ESE? Standard Event Status Enable Query
*ESR? Standard Event Status Register Query
*IDN? Identification Query
*OPC Operation Complete Command
*OPC? Operation Complete Query
*RST Reset Command
*SRE Service Request Enable Command
*SRE? Service Request Enable Query
*STB? Read Status Byte Query
*TST? Self-Test Query
*WAI Wait-to-Continue Command

The execution routines of these functions are located in the VXI-IC driver and the user
has no access to the source code. However, the behavior of some of these commands depends
on a user device. Thus, there are three user entry routines associated with the commands in
bold: *CLS, *RST and *TST?. These routines are part of the device driver. They are empty
by default and can be fill out by the device developer according to his needs. These user
entry routines are executed right after VXI-IC driver routines associated with these commands.
The developer can edit these routines in the same way as the other regular driver routine for
the device-specific commands.
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D.2 List of SCPI Commands Supported by VXI-MBT

The following list presents SCPI commands supported by the VXI-MBT by default. Part of
them is defined as obligatory commands by the SCPI specification, [17], section 4.2.1.

:SYSTem - details: SCPI spec., section 21
:ERRor

:ALL? - returns all err. codes with messages
:CODE

:ALL? - returns all errors codes
[:NEXT]? - retursn next error from the~queue

:COUNt? - returns number of errors in queue
[:NEXT]? - rturns next error with message

:STATus - details: SCPI spec., section 20
:OPERation

[:EVENt]? - returns content of event reg.
:ENABle - enables bits in event reg.
:ENABle? - returns status of enabled bits
:PTRansition <NR1> - sets bit sensor to positive slope
:NTRansition <NR1> - sets bit sensor to negative slope
:CONDition <NR1> - returns content of condition reg.

:QUEStionable
[:EVENt]? - returns content of event reg.
:ENABle - enables bits in event reg.
:ENABle? - returns status of enabled bits
:PTRansition <NR1> - sets bit sensor to positive slope
:NTRansition <NR1> - sets bit sensor to negative slope
:CONDition <NR1> - returns content of condition reg.

:PRESet - sets initial values of above regs.
:DIAGnostic - VXI-IC specific commands

:FLASh - CF card
:UPLoad <String>, <ABPD> - loads file to CF card

:BOOT - reboot VXI-IC
:UDEVice - user device

:INTerrupt
:ENABle <Boolean> - enables interrupt from user dev.
:ENABle? - returns status of user dev. intr.

:INSTrument - VXI-IC specific commands
:INTerface - configuration of dev. interface

:BITMode[0..63] - general purpose I/O mode
:VALue <Boolean> - sets one bit
:VALue? - reads status of one bit

:LOCalbus - local bus mode
:READ? <NR1> - reads reg. from user device
:WRITe <NR1>, <NR1>- writes reg. to user device

:BUFFer - used in general purpose I/O mode
:DIRection? - returns direction of user lines

126



:ENABle? - returns enabled buffers in dev. int.
:ABORT - resets trigger system, SCPI spec.
:ARM - details: SCPI spec., section 24

[:SEQuence[1..8]]
[:IMMediate] - immediately transits to INIT state
:SOURce? - returns source of trigger
:SOURce TTLTRG[0..7]|ECLTRG[0..1]|INTernal

:INITiate
[:IMMediate] - immediately transits to ARM state

:TRIGger
[:SEQuence[1..8]]

[:IMMediate] - immediately transits to dev. act.
:SOURce? - returns source of trigger
:SOURce TTLTRG[0..7]|ECLTRG[0..1]|INTernal

:OUTput - trigger source
:ECLTrg[0..1] - selects ECL line

[:IMMediate] - generatse immediately a pulse
:LEVel? - returns level of ECL line
:LEVel <Boolean> - sets level of ECL line
:STATe? - returns state of the~trg. source
:STATe <Boolean> - enables trg. source

:TTLTrg[0..7] - selects TTL line
[:IMMediate] - generatse immediately a pulse
:LEVel? - returns level of TTL line
:LEVel <Boolean> - sets level of ECL line
:STATe? - returns state of the~trg. source
:STATe <Boolean> - enables trg. source

All commands in the :DIAGnostic and :INSTrument trees are specific commands for
VXI-IC.

The :SYSTem, :STATus trees are defined in the SCPI specification. Only these two
trees contain SCPI obligatory commands.

The :ABORT, :ARM, :INITiate, :TRIGger trees are used for the trigger subsys-
tem. All of them are defined in the SCPI specification.

The :OUTput tree contains VXI-IC specific commands for TTLTRG and ECLTRG trigger
source.
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D.3 VXI-IC Working Registers

Comments to the list:

• Every mnemonic includes prefix FPGA_. The full mnemonic name for the first item from
the table should look like FPGA_INTERRUPT_VECTOR.

• The hexadecimal address of mnemonic is a relative address with respect to the base ad-
dress of the VXI-IC and its value is 0x70800000.

• Access types have three values: RO — read only, WO — write only and RW — read/write
access, and RZ — reset when read.

Mnemonic Addr Access Description

INTERRUPT_VECTOR 0x0 RZ Interrupt Vector
RESP_DATA_ADDRESS 0x4 WO Response Byte
RESP_FULL_ADDRESS 0x8 RO Output Queue Full
MESS_DATA_ADDRESS 0xC RO Message Byte
MESS_EOF_ADDRESS 0x10 RO Input Queue EOF
MESS_EMPTY_ADDRESS 0x74 RO Input Queue Empty
DSR_SBR_ADDRESS 0x14 RO Status Byte Register
DSR_SRE_ADDRESS 0x18 RW Service Request Enable Register
DSR_ESR_ADDRESS 0x1C RO Standard Event Status Register
DSR_ESE_ADDRESS 0x20 RW Standard Event Status Enable Register
DSR_ESR_OPC_ADDRESS 0x24 WO Operation Complete Bit in Standard Event Status Register
DSR_ESR_RQC_ADDRESS 0x28 WO Request Control Bit in Standard Event Status Register
DSR_ESR_QYE_ADDRESS 0x2C WO Query Error Bit in Standard Event Status Register
DSR_ESR_DDE_ADDRESS 0x30 WO Device Dependent Bit in Standard Event Status Register
DSR_ESR_EXE_ADDRESS 0x34 WO Execution Error Bit in Standard Event Status Register
DSR_ESR_CME_ADDRESS 0x38 WO Command Error Bit in Standard Event Status Register
FIFO_RST_ADDRESS 0x3C WO Reset Input and Output FIFO — 1 means Active
ERR_DATA_ADDRESS 0x40 RW Write and Read Error Number from ERROR — EVENT

QUEUE
ERR_RST_FULL_ADDRESS 0x44 RW Write RESET and Read FULL Signal from ERROR —

EVENT QUEUE
ERR_EMPTY_ADDRESS 0x48 WO Read EMPTY Signal from ERROR — EVENT QUEUE
OPER_VALUE_ADDRESS 0x108 RW Write and Read of OPERATION Register
OPER_ENABLE_ADDRESS 0x4C RW Write and Read of Event Enable Register in OPERATION
OPER_CONDITION_ADDRESS 0x50 RW Write and Read of Condition Register of OPERATION
OPER_EVENT_RST_ADDRESS 0x54 RW Read Event Register and Write Reset of Event Register in OP-

ERATION
OPER_PTRANS_ADDRESS 0x64 WO Write PTransition Register in OPERATION
OPER_NTRANS_ADDRESS 0x68 WO Write NTransition Register in QUESTIONABLE
QUES_VALUE_ADDRESS 0x10C RW Write and Read of QUESTIONABLE Register
QUES_ENABLE_ADDRESS 0x58 RW Write and Read of Event Enable Register in QUESTIONABLE
QUES_CONDITION_ADDRESS 0x5C RO Write and Read of Condition Register of QUESTIONABLE
QUES_EVENT_RST_ADDRESS 0x60 RW Read Event Register and Write Reset of Event Register in

QUESTIONABLE
QUES_PTRANS_ADDRESS 0x6C WO Write PTransition Register in QUESTIONABLE
QUES_NTRANS_ADDRESS 0x70 WO Write NTransition Register in QUESTIONABLE
PPC_COMM_CMD_PNT 0x78 RW Common Commands Pointer
PPC_SCPI_PNT 0x7C RW SCPI Pointer
PPC_SCPI_CURR_PNT 0x10C RW SCPI Current Pointer
VME_BRQ_DWB_DGB 0x80 RW BUS REQUESTER — Read: Device Granted Bus, Write: De-

vice Wants Bus
VME_MST_DATA 0x84 RW VME BUS MASTER DATA — Read: Data From VME,

Write: Data To VME
VME_MST_READY_ERROR 0x88 RO VME BUS MASTER READY/ERROR — Read:

MST_READY and MST_ERROR
VME_MST_ADDRESS 0x8C WO VME BUS MASTER ADDRESS — Wire: Write ADDRESS

to VME Master
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Mnemonic Addr Access Description

VME_MST_AS 0x90 WO VME BUS MASTER AS — Wire: Write AS to VME Master
VME_MST_WRITE_N 0x94 WO VME BUS MASTER WRITE_N — Wire: Write WRITE_N

to VME Master
VME_MST_AM_N 0x98 WO VME BUS MASTER AM_N — Wire: Write AM_N to VME

Master
VME_MST_LWORD_DS 0x9C WO VME BUS MASTER DS_N — Wire: Write DS_N to VME

Master
VXI_CMDR_ADDRESS 0xA0 RO Read VXI COMMANDER ADDRESS
INT_LINE 0xC4 RO Read which interrupt line is assigned to which interrupter
INT_ACTIVE 0xC8 RW Read and Write which interrupt line is assigned to which inter-

rupter
INT1_STATUS 0xCC WO Write Interrupt 1 Status
INT_NUMBERS 0xE8 WO Write Interrupts Number
VXI_SIGNAL_REG 0xEC RO Read VXI SIGNAL Register
VXI_SERVANT_AREA 0xF0 RW Read/Write Servant Area Register
VXI_MANUFACTURER_ID 0xF4 WO Write Manufacturer ID to ID Register
VXI_MODEL_CODE 0xF8 WO Write Model Code to Device Type Register
REG_PPC_READY 0xFC WO Switch on LED — PPC Ready
USERDEV_ENA 0x100 RW Enable User Interface
USERDEV_MODE 0x104 RW User Interface Mode, 0 — bit mode, 1 — II mode
USERDEV_BUFF_DIR 0x108 RW Buffer Direction, 0 — Input, 1 — Output
USERDEV_BUFF_0_7 0x10C RW Buffer 0–7 Data
USERDEV_BUFF_8_15 0x110 RW Buffer 8–15 Data
USERDEV_BUFF_16_23 0x114 RW Buffer 16–23 Data
USERDEV_BUFF_24_31 0x118 RW Buffer 24–31 Data
USERDEV_BUFF_32_39 0x11C RW Buffer 32–39 Data
USERDEV_BUFF_40_47 0x120 RW Buffer 40–47 Data
USERDEV_BUFF_48_55 0x124 RW Buffer 48–55 Data
USERDEV_BUFF_56_63 0x128 RW Buffer 56–63 Data
USERDEV_BUFF_ENA 0x12C RW Buffer Enable, 0 — Disabled, 1 — Enabled
USERDEV_REGUSER 0x130 RW User Register in buffers
LBUSA_0_7 0x134 RW LBUSA register, bits 0–7
LBUSA_8_11 0x138 RW LBUSA register, bits 8–11
LBUSA_INT_LINE 0x13C RW LBUSA line which generates interrupt to PowerPC
LBUSA_DIR 0x140 RW LBUSA direction of buffers 0 and 1
LBUSA_ENA 0x144 RW LBUSA enabling bits of buffers 0 and 1
LBUSC_0_7 0x148 RW LBUSC register, bits 0–8
LBUSC_8_11 0x14C RW LBUSC register, bits 0–8
LBUSC_INT_LINE 0x150 RW LBUSC line which generates interrupt to PowerPC
LBUSC_DIR 0x154 RW LBUSC direction of buffers 0 and 1
LBUSC_ENA 0x158 RW LBUSC enabling bits of buffers 0 and 1
OVER_POF 0x15C RO Pending Operation Summary Flag
OVER_REG1 0x160 RW Pending Operation Flags — Register 1
OVER_REG2 0x164 RW Pending Operation Flags — Register 2
OVER_REG3 0x168 RW Pending Operation Flags — Register 3
OVER_REG4 0x16C RW Pending Operation Flags — Register 4
OVER_REG5 0x170 RW Pending Operation Flags — Register 5
OVER_REG6 0x174 RW Pending Operation Flags — Register 6
OVER_REG7 0x178 RW Pending Operation Flags — Register 7
OVER_REG8 0x17C RW Pending Operation Flags — Register 8
TRG_SIGNAL_REG 0x180 RO Signal register for trigger signals
TRG_SLOPE_RISING 0x184 RW Enables rising edge for trigger detection
TRG_SLOPE_FALLING 0x188 RW Enables falling edge for trigger detection
TRG_ENABLE_REG 0x18C RW Enables a trigger source as an interrupt
TRG_INTERRUPT_REG 0x190 RO Latches a trigger event
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D.4 Configuration Options of VXI-IC

The configuration options of VXI-IC can be set up in two ways. First one is a configuration
switch on the VXI-IC board. The second one is tool.cfg configuration file loaded during
booting process of the VXI-IC.

D.4.1 Configuration Switch

The configuration switch is used to set up the logical address of the VXI-IC on VME bus. This
configuration switch is obligatory in the VXI standard. Figure D.1 presents how the eight bits
of the JP8 switch correspond to the A16 address on the VXI bus.

Figure D.1: JP8 — Logical Address Switch

The A16 VME address bits from A6 to A13 are compared in VXI-IC with the JP8 switch.
The address bits A14 and A15 are always set to one by the VME master. Address bits from A1
to A5 are used to address the 16-bit configuration and communication registers in VXI-IC.

D.4.2 Configuration file tool.cfg

The tool.cfg configuration file contains several parameters which are used to initiate the
VXI-IC state during booting process. An example of the tool.cfg file looks as follows:

SCPI:SIMDSP.scp
ManufacturerID:3840
ModelCode:1234
IDN:VXI-MBT, KOPREK, V12, 34
DeviceInterface:1
DeviceMode:1
DeviceEnable:0x4
DeviceDir:0x0
VXIAddrSpace:0
VXIReqMem:5
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Each line consists of a parameter name and a value separated by a colon. The meaning of
the parameters is the following:

• SCPI — defines name of *.scp file which contains definition of IEEE 488.2 Common
Commands and SCPI commands,

• ManufacturerID and ModelCode - figure D.2 presents the content of first two
configuration registers. The fields Manufacturer ID and Model Code indicate who built
the device and what kind of device it is. The VXI-MBT is a general purpose tool and
values of these two fields can’t be anticipated. The developer of user device may want
to configure these fields with his values. Therefore values of these fields is configurable
and can be set in VXI-MBT configuration file using VXI-SDK.

Bit #

Contents

15<-14

Device class

13<-12

Address space

11<-0

Manufacturer ID

ID Register

Bit #

Contents

15<-12

Required memory

11<-0

Model Code

Device Type

Figure D.2: Content of ID and Device Type Configuration Registers

• IDN contains a string which is returned by VXI-IC when the *IDN? command is re-
ceived.

• DeviceInterface, DeviceMode, DeviceEnable and DeviceDir - these are
parameters responsible for the configuration of the device interface.

• VXIAddrSpace and VXIReqMem are responsible for the type of the address space on
the VME bus assigned to VXI-IC and size of this address space. VXI-IC must response
to the A16/D16 addressing mode. Mode A24 and A32 are optional and only one of them
or none can be chosen in the configuration window in VXI-SDK.
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D.5 VXI-IC Connectors

There are two connectors J8 and P8 for interfacing the user device. There are also other con-
nectors: LED_P1 — for the VXI LEDs on the front panel, P9 — for the user LEDS, and P3 —
for the serial port also on the front panel.

D.5.1 The User LEDs and the Front Panel Connectors

Figure D.3 presents pinout of the following connectors:

VXI LEDs connector is used to connect the LEDs mounted on the front panel of a VXI
module. Two of them are obligatory in the VXI standard: Ready and Failed. These LEDs
reflect the state of bits with the same name in the Status Register. The access from the VXI
bus to VXI-IC is indicated by the blinking diode Access. The diode SYSFAIL reflects a state of
the SYSFAIL* line on the VXI bus.

1 2

3 4

5 6

1 2

3 4

5 6

7 8

1

2

3

GND

N.C.

Ready

Access

Failed

SYSFAIL

GND

GND

GND

USR_LED1

GND

GND

RxD

TxD

USR_LED2

USR_LED3

USR_LED4

LED_P1 — VXI LEDs P9 — User LEDs P3 — RS-232

Figure D.3: User LEDs and Front Panel Connectors Pinout

RS-232 port is used for debugging purposes. The developer may use it for interaction with
the PowerPC in VXI-IC. The manual of the RS-232 usage is in appendix D.6. The RS-232
socket can be optionally mounted on the front panel of the VXI module.

User LEDs are general purpose diodes which can indicate any state of the user device or
the device driver. The state of these LEDs can be read and set from the device driver routines
using the following C functions:
void setUserLED(unsigned short ledNb, unsigned short ledState)—
where first argument is LED number. The second argument is LED state where value 1 means
LED is on.
unsigned short getUserLED(unsigned short ledNb) — this function returns
state of the LED number ledNb.

D.5.2 Power Connector

The power connector provides 7 different voltages to the user device which are available on
the VXI backplane. Figure D.4 presents pinout of the connector.
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Figure D.4: Pinout of Power Connector

D.5.3 User Device Connector

The device interface connector can work in two modes: general purpose I/O mode and local
bus mode. Depending on the mode, some of the pins play different role in the communication
with the user device. Some pins are pre-defined and are constant regardless of the mode.

Convention of the GPIO pins naming is as follows:
B<buff>_U<pin>_<direction> where:

• buff — buffer number from 0 to 7,

• pin — pin number from 0 to 61 formatted as two digit number,

• direction — predefined direction of the pin, possible values:
IN — only input,
OUT — only output,
IO — input or output, defined by the user.

The meaning of pre-defined pins is as follows:

• power lines: +5V , +/− 12V ,

• GND — ground pins,

• VXI_TTLTRG0..7 — trigger lines, which are wired directly from the VXI backplane,

• VXI_ECLTRG0..1 — trigger lines also wired from the VXI backplane,

• VXI_CLK10 — 10 MHz clock wired from the VXI backplane,

• VXI_SERA, VXI_SERB — two lines for serial communication wired from the VXI
backplane,

• DEV_INT — interrupt line from the user device, which is connected in the FPGA to
the interrupt vector component,
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• DEV_PON — Power ON pin connected to the message execution control component in
the FPGA,

• N.C. — not connected pin.

Configuration of the GPIO pins can be read from the device driver. The buffers enable/disable
state can be checked in the FPGA_USERDEV_BUFF_ENAworking register. The particular bits
of the register correspond to the particular buffers. The least significant bit is the buffer num-
ber 0 and the most significant bit is the buffer 7. The value 0 means that a buffer is disabled
and 1 — enabled. In a similar way, the buffers direction can be checked by reading value of
the FPGA_USERDEV_BUFF_DIR working register, where value 1 means that the buffer is
configured as an input, and value 0 — an output.

The state of the buffers can also be read from the control software using SCPI commands
as follow:

• :INSTrument:INTerface:BUFFer:DIRection? — this query reads the
FPGA_USERDEV_BUFF_ENA working register, the meaning is the same as described
in the previous paragraph,

• :INSTrument:INTerface:BUFFer:ENABle? — this query reads the
FPGA_USERDEV_BUFF_DIR working register, the meaning is the same as described
in the previous paragraph.
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D.5.3.1 General Purpose I/O Mode

Table D.1: User Device Connector Pin Assignments in the GPIO Mode

Pin Number Row A Row B Row C
1 B0_U00_IO VXI_TTLTRG0 B1_U08_IO
2 B0_U01_IO VXI_TTLTRG1 B1_U09_IO
3 B0_U02_IO VXI_TTLTRG2 B1_U10_IO
4 B0_U03_IO N.C. B1_U11_IO
5 B0_U04_IO B3_U24_IO B1_U12_IO
6 B0_U05_IO B3_U25_IO B1_U13_IO
7 B0_U06_IO B3_U26_IO B1_U14_IO
8 B0_U07_IO B3_U27_IO B1_U15_IO
9 GND B3_U28_IO GND
10 VXI_CLK10 B3_U29_IO N.C.
11 GND B3_U30_IO VXI_SERB
12 DEV_INT B3_U31_IO VXI_SERA
13 DEV_PON VXI_TTLTRG3 B4_U32_IO
14 DEV_OPC* VXI_TTLTRG4 B7_U61_IN
15 GND VXI_TTLTRG5 B6_U55_IO
16 N.C. B7_U56_IN B6_U54_IO
17 GND B7_U57_IN B6_U53_IO
18 N.C. B7_U58_IN B6_U52_IO
19 GND B7_U59_IN B6_U51_IO
20 VXI_ECLTRG1 GND B6_U50_IO
21 VXI_ECLTRG0 VXI_TTLTRG6 B6_U49_IO
22 N.C. VXI_TTLTRG7 B6_U48_IO
23 B7_U60_IN GND B5_U47_IO
24 B4_U39_IO B2_U16_IO B5_U46_IO
25 B4_U38_IO B2_U17_IO B5_U45_IO
26 B4_U37_IO B2_U18_IO B5_U44_IO
27 B4_U36_IO B2_U19_IO B5_U43_IO
28 B4_U35_IO B2_U20_IO B5_U42_IO
29 B4_U34_IO B2_U21_IO B5_U41_IO
30 B4_U33_IO B2_U22_IO B5_U40_IO
31 VXI_VDC-12V B2_U23_IO VXI_VDC+12V
32 VXI_VDC+5V VXI_VDC+5V VXI_VDC+5V

There are C functions which enable access to the user lines state from the device driver:

• getUserDevBit(bitNumber) — This function reads a state of the bit number
bitNumber, which is in a range from 0 to 61. The returned value is 0 or 1.

• setUserDevBit(bitNumber,bitValue)— This function writes value bitValue
(0 or 1) to the bit number bitNumber also in a range from 0 to 61.

There are also a SCPI command and a query which enable read and write of the user line
state from the control software. They are defined as follows:

135



• :INSTrument:INTerface:BITMode[0..61]:VALue? — This query reads a bit
state of which the number is determined by the suffix BITMode; the returned value is 0
or 1.

• :INSTrument:INTerface:BITMode[0..61]:VALue <BOOL> — This com-
mand sets bit state of which the number is determined by the suffix BITMode and
the value <BOOL> may be 0 or 1.

D.5.3.2 Local Bus Mode

Table D.2: User Device Connector Pin Assignments in Local Bus Mode

Pin Number Row A Row B Row C
1 D00 VXI_TTLTRG0 D08
2 D01 VXI_TTLTRG1 D09
3 D02 VXI_TTLTRG2 D10
4 D03 N.C. D11
5 D04 B3_U24_IO D12
6 D05 B3_U25_IO D13
7 D06 B3_U26_IO D14
8 D07 B3_U27_IO D15
9 GND B3_U28_IO GND
10 VXI_CLK10 B3_U29_IO N.C.
11 GND B3_U30_IO VXI_SERB
12 DEV_INT B3_U31_IO VXI_SERA
13 DEV_PON VXI_TTLTRG3 A00
14 DEV_OPC* VXI_TTLTRG4 B7_U61_IN
15 GND VXI_TTLTRG5 A23
16 N.C. DEV_LB_ACK* A22
17 GND B7_U57_IN A21
18 N.C. B7_U58_IN A20
19 GND B7_U59_IN A19
20 VXI_ECLTRG1 GND A18
21 VXI_ECLTRG0 VXI_TTLTRG6 A17
22 N.C. VXI_TTLTRG7 A16
23 B7_U60_IN GND A15
24 A07 DEV_LB_AS* A14
25 A06 DEV_LB_WR* A13
26 A05 DEV_LB_DS* A12
27 A04 DEV_LB_RST* A11
28 A03 B2_U20_IO A10
29 A02 B2_U21_IO A09
30 A01 B2_U22_IO A08
31 VXI_VDC-12V B2_U23_IO VXI_VDC+12V
32 VXI_VDC+5V VXI_VDC+5V VXI_VDC+5V
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The address space of the user device is mapped into the address space of the PowerPC local
bus. The access to the user device registers from the device driver (in the C code) is done
alike reads and writes to a memory. An address pointer to the base address of the user device
address space is in the FPGA_USERDEV_BASE_ADDR constant. The address of a particular
register in the user device is calculated as a sum of the user device base address and the register
address. A list of the VXI-IC working registers, in appendix D.3, contains relative addresses
with respect to the base address of VXI-IC or the user device.

It is also possible to access the user device registers using SCPI messages, namely:

• :INSTrument:INTerface:LOCalbus:READ? <address>— This query reads
value of the user device register of which the relative address is <address>.

• :INSTrument:INTerface:LOCalbus:WRITe <address>, <value> —
This command writes signed integer value <value> to the register of which the relative
address is <address>.

D.5.3.3 The Handshake Protocol Timing

The figure D.5 presents a timing diagram of a read and write operation on the local bus be-
tween VXI-IC and a user device. The VXI-IC is a master and drives lines DEV_LB_AS* (ad-
dress strobe — address is valid), DEV_LB_ADDRESS (address lines), DEV_LB_DS* (data
strobe — data is valid in a write operation, VXI-IC ready for data in a read operation) and
DEV_LB_WR* (read or write operation). The DEV_LB_DATA lines (data lines) are driven by
VXI-IC in a write operation; the user device drives the data line in a read operation. The ac-
knowledge line DEV_LB_ACK* is driven by the user device.

valid address valid address

valid data valid data

VXI-IC 
Clock

DEV_LB_AS*

DEV_LB_ADDRESS

DEV_LB_DS*

DEV_LB_DATA

DEV_LB_WR*

DEV_LB_ACK*

write operation read operation

Figure D.5: Timing Diagram of Reads and Writes from VXI-IC to the User Device

The user device works asynchronously with respect to the VXI-IC clock. The DEV_LB_ACK*

line can be asserted by the user device in any time but no longer than 20µs after the DEV_LB_AS*

line is asserted.
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D.6 RS-232 Debug Port Commands

The RS-232 debug port gives possibility to observe how the VXI-IC behaves by watching
messages printed out in the serial port terminal. There is also a simple shell which allows
execution of a few dedicated commands. All commands are single letter and some of them have
parameters. They can be typed in the terminal by the developer during the normal operation of
VXI-IC. The following table presents list of the RS-232 debug port commands.

Command Description
a Read commander address
b VME bus grant request
c Print Common Commands
e Print errors list
f VME bus mastership release
h Print this help
i <status_id> Generate interrupt on VME bus
p <command string> Parse end execute command
s Print SCPI commands
r <address> Read data from VME (Master)
v Firmware version
w <address> <data> Write data to VME (Master)

The meaning of some of these commands is as follows:

• a — this command allows reading a commander address. VXI-IC has an event and
signal generation capability. In order to generate an event or a signal, the VXI-IC has
to know the logical address of its commander. This address is assigned during the VXI
system initialization by the resource manager. The commander address is stored in the
FPGA_VXI_CMDR_ADDRESSworking register of VXI-IC and can be read by the device
driver.

• b, f, r, w — b is a request for the VME bus access. The VXI-IC has a VME Master
capability and before it can initiate any transmission on the VME bus, the access must be
granted by the VME bus arbiter. After bus has been granted, the user can read and write
data on VME using r and w commands with appropriate parameters. Only A16/D16
mode is available in the RS-232 debug port. When the VME Master access is not needed
anymore, the bus can be released by issuing a command f.

• c, s, e — this commands can be used to verify, whether all IEEE 488.2 Common Com-
mands, SCPI trees or Error list were loaded correctly by VXI-IC during the initialization
process. Issuing one of these commands, the PowerPC appropriately prints the formatted
list of Common Commands, the SCPI trees or the Errors.

• i — this command allows generation of a test interrupt on the VME bus with the <sta-

tus_id> parameter returned during the interrupt acknowledge process.
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• p — this command can be used to verify the functionality of a new SCPI command and
a corresponding device driver routine. This is very useful option during the development
process. When a new command is defined and loaded to VXI-IC, the developer can type
this command in the terminal and see its execution, without sending it through the VXI
bus.

• v — this commands allows quick check of the firmware version in VXI-IC. The minor
version number is automatically incremented in VXI-SDK every time that the device
developer compiles the device driver.

The debug messages can be printed out from device driver routines using the standard C
function printf.
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D.7 VME master capability of VXI-IC

The VME master component is connected to the VME bus from one side and to the local bus
of the PowerPC on the other. From the processor point of view, it is implemented as a set of
registers which are used by the PowerPC software to control the component. The meaning
of the registers is not explained here because the following C functions give full access to
the component functionality:

• int vmeBusRequest(void);

void vmeBusRelease(void);

First of all, the VME bus access must be granted by the VME bus arbiter located in
the slot 0 of a VXI chassis. The function has no parameters and it returns 0, when the bus
is granted, and a positive value — when an error occurred. The bus can be released any-
time and the vmeBusRelease function neither takes a parameter nor returns a value.

• int readVXIReg(unsigned short device, unsigned short reg,

unsigned long *data);

int writeVXIReg(unsigned short device, unsigned short reg,

unsigned long data);

When the bus is granted, the developer can use these functions to read and write register
of another VXI device in the system within the A16/D16 address space. In both cases,
the first parameter is a logical address of the target VXI device, the second parameter is
a register number. The absolute A16 address on the VME bus is calculated by the func-
tion using values of these two parameters. The third parameter is a pointer to the returned
data for the read function. For the write function, the third parameter contains data to be
sent. The functions return 0 if the VME access was successful, and 1 if a bus error
occurred.

• int writeVMEMaster(unsigned long address, unsigned long data,

unsigned int vmeAM, unsigned int vmeDS);

int readVMEMaster(unsigned long address, unsigned long *data,

unsigned int vmeAM, unsigned int vmeDS);

These two functions give possibility to get access to any address in any address space on
the VME bus. The first parameter is an absolute VME address in a given address space.
The second address is a value to be sent for the write function and a pointer to a data to be
received for the read function. The third parameter determines the Address Modifier on
the VME bus which corresponds to the address space such as A16 (value 0), A24 (value
1) or A32 (value 3). The last parameter determines the data size on the VME bus and it
can be D16 (value 0) or D32 (value 1).
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• unsigned long vxiReadCMDRAddress(void);

This last function is used to determine the commander logical address of a device. This
function doesn’t access the VME bus, but it is important for the event and signal ge-
neration mechanism. Before a signal/event can be sent to the commander using the
writeVXIReg function, the logical address of the commander must be known.
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D.8 VME Interrupt Requester Manual

The VME interrupt requester can also be used directly from the device driver. According to the
VXI specification, it is implemented as a Realease On Acknowledge (ROAK) version. There
are two functions which can be used in the device driver:

• unsigned long vmeIntReq(unsigned short status);

This function is used to generate an interrupt on the VME bus. When the interrupt line
is asserted on the VME bus, the interrupt handler in the VXI-IC commander performs
an interrupt acknowledge cycle. During the cycle, the status ID word is prompted from
the VXI-IC interrupt requester and then, the status ID word is forwarded by the interrupt
handler routine to the control software. The status ID word is 16 bits wide and its format
is presented in figure D.6.

status logical address

07815

Figure D.6: Format of status ID word

The logical address tells the interrupt handler routine which device has requested the
service. The status field says what kind of service has been requested.

• unsigned short vmeIntLine(void);

This function returns an interrupt line number which is assigned to the VXI-IC during
the VXI chassis initialization.
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D.9 Implemented Standard VXI Registers

Figure D.7 presents list of registers defined by the VXI standard. The gray registers are im-
plemented in the VXI interface component of VXI-IC. The detailed description of registers
content is in the VXI specification.

IDRegister

Device Type

A24/A32 Offset Register

0x00

0x02

0x04

0x06

0x08

0x0A

Data High0x0C

Data Low0x0E

A24 Pointer High0x10

A24 Pointer Low0x12

A32 Pointer High0x14

A32 Pointer Low0x16

Read

Logical Address

Status Register Control Register

Protocol Register Signal Register

Response Register Data Extended

Write

VXI Reserved

A16

Configuration Registers

Communication Registers

Shared Memory Protocol

Registers

Figure D.7: VXI Configuration & Communication Registers
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D.10 WSP Commands Implemented in VXI-IC

There are 28 WSP commands defined by the VXI standard, but only six of them are obliga-
tory for each message-based device. The other commands must be included according to the
implemented functionality. The list below presents WSP commands implemented in VXI-IC.

Command Capability

Abort Normal Operation All MBD
Assign Interrupter Line Programmable Interrupter
Asynchronous Mode Control Response/Event Generator
Begin Normal Operation All MBD
Byte Available IEEE 488.2 Comliant Device
Byte Request IEEE 488.2 Comliant Device
Clear All MBD
Control Event Event Generator
Control Response Response Generator
End Normal Operation All MBD
Identify Commander VME Master
Read Interrupt Line Programmable Interrupter
Read Interrupters Programmable Interrupter
Read Protocol All MBD
Read Protocol Error All MBD
Read STB IEEE 488.2 Compliant Device
Trigger Optional for all devices

The Capability column indicates to what feature of VXI-IC is assigned the WSP command.
The detailed description of each command is in the VXI specification. Most of the commands
are not visible for the device developer. They are executed at the VXI interface level. There
are two commands which generate interrupt to PowerPC: Clear and Trigger.

The Clear command has basic functionality implemented in VXI-IC such as clearing of
VXI interface. But according to the VXI specification, the command may be connected with
some kind of initialization functionality implemented in the user device. Thus, there is a user
entry routine which is launched every time when the Clear command is received by VXI-IC.

The Trigger command behaves in a similar way. There is also a user entry routine which is
launched every time when the command is received by VXI-IC. This routine is common for all
trigger sources as it is described in section 6.1.3.6. The execution of the Trigger command is
completely user dependent. VXI-IC does nothing when the command is received.
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D.11 VXI-IC Status Registers

D.11.1 IEEE 488.2 Compliant Status Registers

The status registers in VXI-IC are implemented according to the IEEE 488.2 standard and SCPI
specification. Both define some amount of status registers for the device state reporting. Figure
D.8 presents obligatory status registers required by the IEEE 488.2 standard.
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Figure D.8: Status Registers defined by IEEE 488.2

There are some comments in the figure which include Common Commands names. These
commands correspond to the particular registers and are used for configuration and readout
of them. Nine of the thirteen obligatory Common Commands operate on the status registers.
The details how these commands act on the status registers are described in the IEEE 488.2
specification, section 11. All registers are implemented in VHDL and the content of these
registers is mapped into the address space of the PowerPC local bus. All mnemonics related to
these registers are listed in appendix D.3.

D.11.2 SCPI Specification Status Registers

The SCPI specification defines status registers which are related to the device functions. Fig-
ure D.9 presents registers defined by the SCPI specification in addition to the status registers
defined by the IEEE 488.2 standard. These registers are also implemented in VXI-IC.

145



0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

VOLTage
CURRent

TIME
POWer

TEMPerature
FREQuency

PHASe
MODulation
CALibration

Available to designer
Available to designer
Available to designer
Available to designer

INSTrument Summary
Command Warming

NOT USED*

+

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

CALibrating
SETTing

RANGing
SWEeping

MEASuring
Waiting for TIGger Summary

Waiting for ARM Summary
CORRecting

Available to designer
Available to designer
Available to designer
Available to designer
Available to designer

INSTrument Summary
PROGram Running

NOT USED*

+

QUEStionable Status

OPERation Status

0
1
2
3
4
5
6
7

Operation Complete
Request Control

Querry Error
Device Dependent Error

Execution Error
Command Error

User Request
Power On

++

Standard Event 
Status Register

0
1
2
3
4
5
6
7

•
• 

 •
 

Error/Event Queue

Available to designer
Available to designer
Error/Event or 
Available to deisgner

MAV

RQS

Status Byte

Figure D.9: Status register defined by SCPI

There are a QUEStionable status register, an OPERation status register, and an Error/Event
Queue. The following SCPI commands operate on these registers respectively:

:SYSTem
:ERRor

:ALL?
:CODE

:ALL?
[:NEXT]?

:COUNt?
[:NEXT]?

:STATus
:OPERation

[:EVENt]?
:ENABle
:ENABle?
:PTRansition <NR1>
:NTRansition <NR1>
:CONDition <NR1>

:QUEStionable
[:EVENt]?
:ENABle
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:ENABle?
:PTRansition <NR1>
:NTRansition <NR1>
:CONDition <NR1>

:PRESet

The :SYSTem:ERRor subtree is used to operate on the Error/Event Queue. The details of
each command is in the SCPI specification. The content of the QUEStionable and OPERation
registers can be accessed from the device driver because they are available on the PowerPC local
bus under the following mnemonics: OPER_VALUE_ADDRESS and QUES_VALUE_ADDRESS.
Other mnemonics related to these register are listed in appendix D.3.
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D.12 VXI-IC LBUS Implementation

The VXI-IC has implemented a local bus connected to adjacent VXI modules on both sides.
The 12 lines of LBUSA and LBUSC are divided into two buffers. The buffers are bidirectional,
each of the buffers can be set to a specific direction. Each buffer can be enabled and disabled
at any time. There is also additional feature which allows choosing the line of LBUS which
can generate an interrupt to PowerPC with either a rising or falling edge. This feature is useful
when the developer wants to implement a communication protocol. If the VXI-IC works as a
slave on the particular LBUS, then it doesn’t need to check continuously in a loop what is the
line state. For example, the developer can choose which line is responsible for transmission
initialization and the level change on this line will generate an interrupt to PowerPC. The in-
terrupt handler in the processor calls a user entry routine where the developer can implement
a custom communication protocol. Figure D.10 presents physical connection of FPGA and
LBUS buffers.
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Figure D.10: Implementation of LBUS

Figure D.11 contains a list of working registers which are responsible for the LBUSA and
LBUSC functionality. Each register can be read and written.

7 6 5 4 3 2 1 0

11 10 9 8

Sl Int Line

B1 B0

B1 B0

7 6 5 4 3 2 1 0

11 10 9 8

Sl Int Line

B1 B0

B1 B0

LBUSA_0_7

LBUSA_8_11

LBUSA_INT_LINE

LBUSA_DIR

LBUSA_ENA

LBUSC_0_7

LBUSC_8_11

LBUSC_INT_LINE

LBUSC_DIR

LBUSC_ENA

Figure D.11: Working registers of LBUS

The registers LBUSx_x_x are used to latch the state of the LBUSx line. Depending on
the buffer direction, the LBUSx_x_x are read only or write only. The LBUSx_DIR register is
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responsible for determination of the B0 and B1 direction. Value 0 means that the buffer works
as an input, for value 1 the buffer works as an output. Setting to 1 the bits B0 or B1 of register
LBUSx_ENA enables the buffers B0 and B1. The bits from 0 to 3 of the LBUSx_INT_LINE
register determine which line generates an interrupt to PowerPC. The value of this field can be
from 0 to 11 which corresponds to LBUSx lines. By default, the register value is set to 15 which
means, no line generates an interrupt. The bit 4 of the LBUSx_INT_LINE register determines
which slope generates the interrupt - value 0 corresponds to the rising edge and value 1 to the
falling edge.

All registers can be accessed from the device driver routines using the register mnemonics.
Based on these registers and LBUS interrupts to PowerPC, the developer is free to program any
custom protocol which can be used for communication with other VXI modules.
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D.13 Direct Register Access Mode to the User Device

As it was described in the previous chapters, the access to working registers of the user device
is possible from the device driver. The control software has an indirect access to the device
only by SCPI commands. A SCPI command is sent to VXI-IC and then appropriate driver
routine accesses the working registers of the user device. This type of communication with
the user device is a base idea of the VXI-MBT. However, register-based devices are used quite
often instead of message-based devices due to direct and fast access to the working registers of
the device. In many cases, the control software needs to read a large block of data e.g. a trace
from an oscilloscope. In this case reading of megabytes of data using SCPI response would be
inefficient. Converting series of numbers into a string in the device formatter, and extracting
the same bunch of numbers in the control software would cost a lot of time and computation
power. The other way is simply reading directly from the control software an area of addresses
where necessary data of the device is mapped into the VXI bus address space. A block transfer
on the VXI bus is usually involved in reading of the data which significantly increases the
transmission speed. In many message-based devices the direct access to working registers is
enabled. It is also provided in VXI-MBT and it is presented in figure D.12.
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Figure D.12: Arbitration of access to the user device

The direct access to the working registers of the user device is only possible when the
device interface is configured in the local bus mode. As was described in chapter 6.1.3.2,
the address space of the user device is mapped to the address space of the local bus of the
processor. The same address space of the user device is accessible directly from the VXI bus.
VXI-MBT allows mapping the device address space into the A24 or A32 address space on
the VXI bus. This method of memory mapping in message-based devices is described in the
VXI specification [15] in section C.2.4.3. In order to configure the direct access to the device
working registers from the VXI bus, the device developer has to do the following things:

• Configure the address space in the ID Register of the VXI configuration registers in
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VXI-IC to A16/A24 or A16/A32 mode. The configuration is done in VXI-SDK.

• Configure the required memory amount in the Device Type register of the VXI configu-
ration registers in VXI-IC. The VXI controller assigns an address space large enough to
cover the address space of the device working registers, see section 6.1.3.8. This feature
is also configured in VXI-SDK.

During initialization process of the VXI system, the controller reads the configuration reg-
isters of the devices to check if there is a device in the system which needs address space in
A24 or A32 address space. If there is such a device, the controller writes to the Offset Register

a base address for the particular device. More details one can find in the VXI specification,
section C.2.1.1.2. The base address assigned to the VXI-IC on the VXI bus corresponds to the
user device register at zero address. Since the local bus of the user device has 24 address lines
and 16 data lines, only A24/D16 or A32/D32 access mode on VME is allowed. As presented in
figure D.12, the VME Slave component is a slave with regard to the VXI bus communication,
but it is a master on the local bus. It means that there are two masters: the processor and the
VME slave which can simultaneously initiate transmission on the local bus to the user device.
In order to avoid a conflict on the local bus, the Local Bus Arbiter was implemented.
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D.14 Sequential and Overlapped Mode of Commands Exe-
cution

The IEEE 488.2 defines two modes of command execution: sequential and overlapped mode.
In the sequential mode, the next command can be executed when the first one has finished. In
overlapped mode, the next command can be executed while the previous one is still in progress.
The situation gets complicated when an execution of the given command depends on comple-
tion of another one issued a while ago. In this case there is a pending-operation flag defined by
the standard which is used together with the Common Commands *OPC, *OPC? and *WAI to
synchronize the operation of a device and a controller, see also appendix D.1.

Because all of the Common Commands and SCPI commands implemented in VXI-IC are
executed sequentially, there is no need to implement this mechanism for VXI-IC. Nevertheless,
the developer may want to implement overlapped commands for his device. For this purpose
a dedicated line was designed in the device connector. The line is named DEV_OPC* and
is connected to one of the bit in a dedicated OVER_REG1 register in VXI-IC. The negation
means that the line is always zero even if the user device doesn’t use the line, i.e. there is
no overlapped commands implemented in the user device. If the device developer wants to
implement overlapped commands, he must take care of setting this line to one in the user
device when the overlapped command is executed.
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0 31 0 31 0 31 0 31

... ... ... ...
Set by Device Driver

Figure D.13: Configuration of Working Registers for Overlapped Mode of Command Execu-
tion

The developer may also want to set a pending operation flag directly from the device driver.
For that purpose a set of OVER_REGx registers was implemented in VXI-IC as it is presented
in figure D.13. There is 8 registers 32-bit each. The bit 0 of the first register is connected
to the DEV_OPC* line. The other bits are read and set from the device driver. Each bit may
correspond to one overlapped command. The bits assignment is up to the developer. All bits
from the eight registers are ored and connected to one global bit in the register OVER_POF
which corresponds to the pending-operation flag defined by the IEEE 488.2 standard.
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D.15 Formatting Routines

The formatting routines are used by the device developer to format the response string for
device-specific SCPI queries according to the IEEE 488.2 syntax. There is a set of formatting
routines which accept native data types and generate response strings put into the output queue.
All formats of the string generated by the formatter routines are described in the IEEE 488.2
standard. The formatting routines are defined as follows:

• unsigned long formatCHARACTER(unsigned char *string);

Tthis function puts into the output queue one of the allowed respone CHARACTERs.
The CHARACTER string is a parameter of the function.

• unsigned long formatNR1(double value);

unsigned long formatNR2(double value);

unsigned long formatNR3(double value);

The formatNRx functions convert a variable value of double type into a string represent-
ing a number in format NR1, 2, or 3 according to the ANSI X3.42-1975 standard [69],

• unsigned long formatBinary(unsigned int);

unsigned long formatOctal(unsigned int);

unsigned long formatHexadecimal(unsigned int);

A number can be returned in non-decimal format such as a binary, octal or hexadeci-
mal number. Passing numbers in one of these formats may later simplify parsing of the
response string in the control software,

• unsigned long formatString(char *string, unsigned short quote);

The string of data to be sent is formatted into string enclosed in single quotes (param
quote is 0) or in double quotes (param quote is 1),

• unsigned long formatABPD(unsigned short *data,

unsigned short format);

This function puts into the output queue an arbitrary block program data as a byte se-
quence in definite length format (param format is 0) or as an indefinite length format
(param format is 1).

• unsigned long formatExpression(unsigned char *string);

This function puts into the output queue a string formatted by the driver routine. The
string is taken as it is passed and the formatter only encloses it in parenthesis.

All these functions return 0 if the formatting operation has finished successfully, and they
return 1 when the output queue is full.
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D.16 SCPI Commands Definition in VXI-SDK

Figure D.14 presents a VXI-SDK window which is used to define new SCPI commands and
accompanying parameters.

Figure D.14: SCPI Commands and Parameters Definition Window

The definition of SCPI commands consists of two parts. The first step is the mnemonic
definition. In the second step, if the mnemonic is a message (a command or a query) and it has
parameters, features of the parameters must be defined.

D.16.1 Mnemonics Definition

The meaning of parameters for mnemonic definition is described below:

• ID — this is a unique number which is returned, when the parser in VXI-IC interprets
the command. This number is assigned automatically, when a new SCPI command is
created. Each element of the SCPI tree has its own unique number.

• Message — is a checkbox which is used to indicate that the given element of the SCPI
tree is executable. The SCPI tree can consist of non-executable elements which are only
used to built command hierarchy. But some of the nodes and all leaves are messages
which have corresponding driver routines. When the checkbox is on, the VXI-SDK
creates automatically an empty driver routine for this particular node or leaf.

• Short and Extension — these two fields contain the short version of the SCPI mnemonic
and its extension according to the IEEE 488.2 syntax.

• Default — is a checkbox which tells the parser that the given mnemonic can be omitted
in an incoming command. If the mnemonic is missing, the parser should take the default
one at the given level of the SCPI tree. If no default mnemonic is defined at the given
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level, the parser returns an error. The default mnemonic is emphasized in square brackets
in the SCPI tree.

• Command or Query — these options are used to determine if the message is a command
or a query. If the message is simultaneously a command and a query, it must be defined
separately in two steps, because the command may have different parameters than the
corresponding query. The query mnemonic has a question mark following the mnemonic.

• Parameters — the field is checked when the SCPI message has at least one parameter.
Then, a frame with the parameter list appears on the right side of the window.

• Numeric suffix — this checkbox says that the given mnemonic has a suffix. When the
field is checked, the developer can specify range of the suffixes in two additional numeric
fields in the window.

D.16.2 Parameters Definition

When Parameters checkbox is selected, the list of parameters appears on the right side of
the Command Definition window. Each parameter appears on a separate tab. The name of the
parameter can be specified in the Name field and it is displayed on the tab. There are eight types
of parameters which can be defined: character, NR1, NR2, NR3, string, boolean, arbitrary block
program data (ABPD) and expression. Depends on the parameter type, different parameter
options appear in the frame below the name. All parameters are implemented according to the
IEEE 488.2 standard and SCPI specification.
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D.17 Built-in C Routines for Specific SCPI Driver

There is a number of C routines precompiled in the VXI-IC firmware which can be used by the
device developer in the device driver or in the user entry routines.

All of the routines were described in the previous chapters and appendices. The list in-
cluded below presents in a concise form the implemented routines:

User LEDs operation:

void setUserLED(unsigned short ledNb, unsigned short ledState);
unsigned short getUserLED(unsigned short ledNb);

Device interface operation:

unsigned short getUserDevBit(unsigned short bitNumber);
unsigned long setUserDevBit(unsigned short bitNumber, unsigned short bitValue);
unsigned short getUserBuffer(unsigned short buffNb);
unsigned long setUserBuffer(unsigned short buffNb, unsigned short value);
unsigned long readDevReg(unsigned long address, unsigned int *value);
unsigned long writeDevReg(unsigned long address, unsigned int value);

VME Master operation and event and signal generation:

int vmeBusRequest(void);
void vmeBusRelease(void);
int readVXIReg(unsigned short device, unsigned short reg,

unsigned long *data);
int writeVXIReg(unsigned short device, unsigned short reg,

unsigned long data);
unsigned long writeVMEMaster(unsigned long address, unsigned long data,

unsigned int vmeAM, unsigned int vmeDS);
unsigned long readVMEMaster(unsigned long address, unsigned long *data,

unsigned int vmeAM, unsigned int vmeDS);
unsigned long vxiReadCMDRAddress(void);

VME Interrupts operation:

unsigned long vmeIntReq(unsigned short status);
unsigned short vmeIntLine(void);

Formatter routines:

unsigned long formatCHARACTER(unsigned char *string);
unsigned long formatNR1(double value);
unsigned long formatNR2(double value);
unsigned long formatNR3(double value);
unsigned long formatBinary(unsigned int);
unsigned long formatOctal(unsigned int);
unsigned long formatHexadecimal(unsigned int);
unsigned long formatString(char *string, unsigned short quote);
unsigned long formatABPD(unsigned short *data, unsigned short format);
unsigned long formatExpression(unsigned char *string);
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D.18 Trigger Detection Subsystem

There are 11 sources of triggers which can be detected by VXI-IC: eight TTLTRG signals, two
ECLTRG signals and a WSP Trigger Common Command. All of them can be selected as a
source for the trigger subsystem in VXI-IC. Each of these sources may generate an interrupt
to PowerPC. When the interrupt is generated, PowerPC launches a trigger interrupt handler

routine. Figure D.15 presents a set of registers which are used for the trigger sources.
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Figure D.15: Trigger Detection Subsystem

All trigger sources are disabled by default. One can read the current state of an individ-
ual line by reading the TRG_SIGNAL_REG register. The trigger line can generate an inter-
rupt on a positive slope, on a negative slope, or on both. These options can be set in the
TRG_SLOPE_RISING and TRG_SLOPE_FALLING registers. A value 1 in the particular bit of
the register enables interrupt generation on one or both of the select slopes. There is no slope
selection for the WSP Trigger command, because the interrupt is generated every time when
this command is detected by the WSP execution component. All trigger source are disabled
by default. They can be enabled in the TRG_ENABLE_REG register. Each trigger line can
be enabled individually. The enabled trigger source is latched in the TRG_INTERRUPT_REG

register. The logical OR of the bits from this register is wired to the main interrupt vector of
the PowerPC. When the interrupt is generated to the PowerPC, the trigger interrupt handler

routine is launched. The developer can program in this routine any scheme of trigger system
appropriate for his application.
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D.19 Contents of the Attached CD-ROM

The attached CD-ROM contains the following items:

• Source code of VXI-SDK. This is a Microsoft Visual Studion 6.0 project. The code is
written in Visual Basic 6.0 — folder VXISDK_VB.

• VXI-IC firmware. It is a Xilinx EDK Studio 8.2 project. It includes VHDL components,
bootloader and VXI-IC driver — folder VXIIC_EDK.

• Schematics and PCB of VXI-IC. This is a project for Protel DXP 2000 —
folder VXIIC_DXP.

• This thesis in pdf format — root folder.
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