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Abstract

The TESLA Test Facility (TTF) is designed to demonstrate the feasibility of a 500 GeV
ete -linear collider. One of the major subsystems under study is the low level RF control
system. For cost saving reasons one klystron supplies RF power to 32 superconducting
cavities which are operated in pulsed mode at gradients of up to 25 MV/m. Significant
Lorentz force detuning, microphonic noise, and power limitations are the main issues for
the low level RF control. A fully digital control system has been developed and installed
in the TESLA Test Facility to control the field vector sum of eight cavities initially. The
digital feedback system provides flexibility in the control algorithm, precise calibration
of the vector sum, extensive diagnostics, and exception handling. The main features are
a sampling rate of 1 MHz for the individual cavity signals, digital detection of real and
imaginary parts of the complex field vectors instead of amplitude and phase detection,
and the concept of adaptive feed forward to suppress repetitive errors to minimize the
control effort. During the commissioning phase of the first accelerating module in the TTF
linac the RF control system has proven to be a reliable system exceeding the performance
goals. The adaptive feed forward scheme has reduced the residual rms errors of amplitude
and phase by a factor of 10. Measurements of the microphonic level in the module have
shown that the fluctuations of the resonance frequencies are below 10 Hz (rms) under
the condition that the helium pressure is kept constant within 0.25 mbar peak to peak.
The pulsed operation has not lead to excessive excitation of mechanical resonances of the
cavities. Investigations of the dynamics of Lorentz force detuning have shown that the
description of the detuning by a first-order differential equation gives a qualitatively good
agreement with the measured data. However, it remains the question if the description is
still valid for the dynamics at high gradients above 20 MV /m.



Zusammenfassung

Mit der TESLA Test Facility (TTF) befindet sich ein Test-Linearbeschleuniger im Auf-
bau, mit dem die technische Realisierbarkeit eines 500 GeV ete™ -Linearbeschleunigers
demonstriert werden soll. Eine der wesentlichen Komponenten, die dabei untersucht wird,
ist das Hochfrequenzkontrollsystem. Aus Kostengriinden wird ein Klystron 32 supralei-
tende Beschleunigungsstrukturen mit Hochfrequenzleistung versorgen. Die Strukturen
werden im Pulsbetrieb bei Beschleunigungsgradienten von bis zu 25 MV/m betrieben.
Die Hauptaufgaben fiir das Hochfrequenzkontrollsystem sind, durch die bei diesen Gra-
dienten bedeutsame Lorentzkraftverstimmung, mechanische Vibrationen (Mikrophonie)
und Leistungsbeschrankung des Klystrons gegebenen Storungen und Limitationen zu
kompensieren. Fiir die TESLA Test Facility ist ein volldigitales Hochfrequenzkontroll-
system entwickelt und installiert worden, welches in einer ersten Stufe die Vektorsumme
von acht Hohlraumresonatoren regelt. Das digitale Rickkopplungssystem bietet grofie
Flexibilitdt in der Anwendung von Kontrollalgorithmen, genaue Kalibration der Vek-
torsumme, umfangreiche Diagnostik und die Moglickeit, automatisierte Prozeduren fiir
den Ausnahmefall zu implementieren. Die wichtigsten Eigenschaften des Kontrollsystems
sind eine Abtastrate von 1 MHz der einzelnen Kavitidtensignale, deren digitale Detek-
tion als Real- und Imaginérteile stattfindet anstatt der Detektion von Amplitude und
Phase. Desweiteren wird das Konzept von adaptivem Feed Forward angewandt, welches
zeitlich periodische Storgroflen unterdriickt und damit die Riickkopplungsschleife ent-
lastet. Wahrend der Inbetriebnahme des ersten Beschleunigungsmoduls der TESLA Test
Facility hat das digitale Hochfrequenzkontrollsystem seine Zuverlissigkeit unter Beweis
gestellt und die gesteckten Ziele iibertroffen. Das Konzept des adaptiven Feed Forwards
hat die verbleibenden rms-Fehler in Amplitude und Phase um einen Faktor 10 reduziert.
Messungen der mechanischen Vibrationen im Beschleunigungsmodul haben gezeigt, dafl
die hiervon herrithrenden Schwankungen der Resonanzfrequenzen der Kavitdten unter
einem Wert von 10 Hz (rms) liegen. Dies galt unter der Voraussetzung, dafl die Heli-
umdruckfluktuationen innerhalb von 0,25 mbar konstant gehalten werden konnen. Der
Pulsbetrieb hat zu keinen iibermafliig grofen Anregungen von mechanischen Resonanzen
der Kavitaten gefiihrt. Untersuchungen zum dynamischen Verhalten der Lorentzkraftver-
stimmung haben gezeigt, da} die Beschreibung des zeitlichen Verlaufs der Verstimmung
durch eine Differentialgleichung erster Ordnung eine qualitativ gute Ubereinstimmung
mit den gemessenen Daten aufweist. Es bleibt jedoch die Frage, ob diese Beschreibung
die Dynamik der Lorentzkraftverstimmung auch noch bei Beschleunigungsgradienten von
iber 20 MV /m ihre Giiltigkeit behélt.
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Chapter 1

Introduction

Particle accelerators have been playing a very important role in experimental particle
physics. With these instruments, it has been possible to develop and verify a coherent
model describing the fundamental constituents of matter and its interactions. This model
is known as the Standard Model. Its predictions concerning the electro-weak forces, which
were later confirmed by experiments, have demonstrated the power of this model. Despite
its great success, the Standard Model leaves many important questions unanswered. For
example, in order to find an explanation for the origin of the mass of the different quarks,
leptons and bosons, the Higgs-mechanism has been introduced - but neither the Higgs
mass nor the masses of the fundamental particles can be predicted. Particle physicists are
therefore called upon to develop and study theories that go beyond the Standard Model.
One very attractive extension of the model is the theory of supersymmetry (SUSY), which
describes a symmetry between fermions and bosons. It predicts the existence of super
symmetric particles and provides for a unification of the electro-weak and strong interac-
tions in the context of the Grand Unified Theory. However, these points, as yet unclarified,
can only be investigated at energy levels that are higher than those available today. At
the present time, a new proton-proton circular collider (LHC for Large Hadron Collider)
is under construction at CERN (Geneve, Switzerland). It is designed to reach a center of
mass energy of 12 - 14 TeV. Despite the fact that positron-electron colliders have a much
lower center of mass energy than hadron colliders (like proton-anti-proton colliders), the
ete~-colliders can deliver results of much higher precision. There is widespread agreement
within the high energy physics community that an e*e™-collider with an energy level well
above the LEP2 center of mass energy (FEe.,s = 200 GeV) will provide complementary
results [CDR 500]. On account of the initial state of positrons and electrons being well
defined, the signature of their collision can reveal precise information about their inter-
action. The desired energy range of positron-electron annihilation between 300 GeV and
1000 GeV cannot be reached with circular accelerators by reasonable means. The syn-
chrotron radiation losses, which are drastically increasing with increasing energy, can only
be avoided in a linear collider. Since the expected cross sections of the interactions in this
energy range are in the range below picobarn (< 107*° m?), the required luminosity has
to be above 10**cm™2s™! in order to achieve a reasonable event rate. This demands large



bunch charges, high beam power and extremely small spot sizes at the interaction point.

The TESLA collider (TeV-Energy Superconducting Linear Accelerator) with a center
of mass energy of 500 GeV is an approach to reach this goal. It is based on supercon-
ducting cavities operating at 1.3 GHz. The full list of design parameters is given in
[CDR 500]. To demonstrate the feasibility of such a collider, the TESLA Test Facility
(TTF) is presently under construction at DESY (Hamburg, Germany) [TTF CDR]. The
first stage of this facility started operating in May 1997. The requirements of unprece-
dentedly small spot sizes at the interaction point and high luminosity demand a very low
energy spread contribution from the RF system. The use of superconducting cavities for
a high energy linear collider therefore raises the new challenge of achieving a low energy
spread. These cavities have very narrow bandwidths and are consequently highly sen-
sitive to mechanical disturbances. The resulting errors in amplitude and phase have to
be corrected by means of feedback systems. The basic principle of an RF control system
as used in superconducting electron accelerators is explained in [Grad 92]. In the past
few years, several accelerators using superconducting cavities have come into operation
(KEK, CERN/LEP, CERN/SPS, DESY/HERA, CEBAF, S-DALINAC, LISA, MACSE,
HEPL). Most of them are operated in continuous-wave mode. A list detailing the RF
system-related parameters of superconducting electron accelerators (linear and circular)
is provided in [Sim 93]. Experience with superconducting cavities at the above-mentioned
laboratories has shown that microphonics can cause severe problems in controlling the ac-
celerating fields.

In order to reduce the installation costs of a high energy linac, it seemed advantageous
to drive several cavities by one high power klystron instead of supplying RF power to the
cavities by individual low power klystrons. This approach has already been used at some
accelerator facilities but only in circular machines. One klystron, for example, supplies RF
power to four cavities at KEK, 16 cavities at CERN/LEP and 16 cavities at DESY/HERA.
In this, the amplitude and phase control of the vector sum of the accelerating field has
been used at KEK and at DESY/HERA, while only the scalar sum of the 16 cavities is
used for gradient control at CERN/LEP. The objective of the TESLA Test Facility is to
control the field vector sum of 32 cavities, which are driven by one 10 MW klystron.

Operating the cavities at an average accelerating gradient of 25 MV /m introduces a
new source of interference, which causes the mechanical deformation of the cavities on
account of the accelerating field (Lorentz force detuning). Since TESLA will be operated
in pulsed mode with RF pulses of 1.3 ms, the mechanical deformation is dynamic and
occurs repeatedly. These major interferences, and the effects of microphonics and Lorentz
force detuning require a powerful and versatile RF feedback system.

The subject-matter of this thesis is the development of a fully digital RF feedback
system to be used in the first stage of the TESLA Test Facility, namely in the control of
eight cavities by one common klystron.

In chapter 2, the possible error sources related to RF control are discussed and re-
quirements for amplitude and phase stability are derived. Three different options for an
RF feedback system are introduced and the one chosen for the TESLA Test Facility is



presented.

The theory underlying the RF cavities is summarized in chapter 3. In this chapter,
steady-state equations are derived and then extended to the transient behavior of a cavity
with beam loading. Special attention has been given to the forward and reflected waves
at the cavities with mismatches.

The digital RF system, which at present has been installed for the accelerating field
control of eight cavities, is described in chapter 4. Furthermore, this chapter provides
information on the operational experience gained during commissioning.

In chapter 5, the tools of modern control theory are applied to investigate the stability
of the digital RF control system with respect to the loop delay time and the next passband
mode (37 - mode).

The mechanical properties of a TESLA 9-cell cavity are studied in chapter 6 - including
microphonics, the transient behavior of Lorentz force detuning during an RF pulse and
the mechanical resonances of the accelerating structure.



Chapter 2

RF Control Design

To meet the requirements for a next-generation linear collider, small spot sizes at the
collision point and high beam power are necessary to achieve a high luminosity of several
103 ¢cm~?s!. The TESLA approach of a linear collider design is based on superconducting
accelerating structures with average accelerating gradients of 25 MV /m. The advantages
of this technology are significant [CDR 500]; however, they are accompanied by some new
challenges when compared with the conventional approach that uses normal conducting
accelerating cavities. The requirements for the RF system demand a sufficiently low
energy spread of the beam at the interaction point.

In this chapter, the general sources of errors of the accelerating field resulting in
energy spread are investigated in the case of a superconducting linear accelerator before
the requirements for an RF control system are specified. In the final section, different
design options and the one chosen for the TESLA Test Facility are presented.

2.1 General Sources for Cavity Field Errors

Energy fluctuations of an accelerated beam along a linac are caused by various phenomena.
The cavities in TTF/TESLA are operated in a pulsed mode where each klystron drives
up to 32 cavities. The maximum pulse repetition rate is 10 Hz. The RF pulse length is
1330 ps from which 530 us are required to build up the RF field in the cavities. The beam
is accelerated for 800 us with a constant accelerating field. Three different types of energy
fluctuations have to be distinguished: macro pulse-to-macro pulse, bunch-to-bunch and
intra-bunch energy fluctuations. Some of them have been studied in detail in [Mos 95].
The following provides an overview of the different contributions to the energy spread.

2.1.1 Microphonics

Mechanical vibrations caused by the accelerator environment are always present and may
be transferred to the accelerating structures. A schematic diagram of the possible sources
and the transfer medium is shown in Figure 2.1 [Grd 92]. Vibrations caused by vacuum
pumps can be transferred to the cavities by the beam tube. Man-made noise (traffic,



machinery, etc.) and ground motions (seismic activities, ocean waves, elastic motion
produced by the moon) are imposed on the linear accelerator through the ground and
the supports. In addition to these, the vibrations of the pumps and compressors of the
cryogenic plants can be passed onto the cavities by means of the helium transfer lines or
directly by the liquid helium flow. Each transfer medium has a certain filter characteristics
on the imposed noise resulting in a filtered microphonics frequency spectrum transferred
to the cavities or to their supports. The vibrations modulate the resonance frequency of
the cavity. In superconducting linacs, the cavities have a high quality factor which results
in a narrow resonance bandwidth in the order of a few hundred Hertz. As far as TESLA
with its loaded quality factor of Q; = 3 - 10° is concerned, the bandwidth is 217 Hz at a
resonance frequency of 1.3 GHz. Since mechanical vibrations are expected in the range
well below 1000 Hz [Mos 94], the resulting change in the resonance frequency is very small
during a 1300 ps pulse. It mainly influences the resonance frequency from macro-pulse
to macro-pulse and therefore the RF phase with respect to the beam if no feedback loops
are closed. It has been shown [Ju et.al.93][Shi et.al.95][Br/Ro 94] that ground motions
with frequencies above 0.1 Hz are wave-like with wave lengths of up to several hundred
meters. The power density of these motions is decreasing very rapidly with increasing
frequency. The resulting vibrational excitation of the cavities can be considered as corre-
lated. Nevertheless, man-made noise usually predominates over natural noise. Therefore,
the microphonic noise is not predictable and is expected to be uncorrelated along the
linac.

Source Transfer Medium

\

vacuum pumps beam tubes —>

machinery
(external vibration sources)
traffic » ground, supports |  cavity,
g tuner
ground mation
ocean waves
> Helium transfer line, o
heat exchanger o
COMpressors,
pumps
—> Helium gas >

Figure 2.1:  Microphonic sources and their transfer medium to an accelerating cavity.



2.1.2 Lorentz Force Detuning

The objective is to reach high electromagnetic fields in superconducting structures. How-
ever, high electromagnetic fields in a cavity cause strong Lorentz forces acting on the walls.
This deforms the cavity, leading to a change in the resonance frequency. It is however
possible to increase the wall thickness to enhance its rigidity. On the other hand, the wall
thickness should be kept thin since this ensures more effective cooling by liquid helium
and results in lower material costs. As a consequence of this, a compromise between the
two aspects has to be found. The wall thickness of the TESLA cavities has been chosen
to be 2.8 mm, and the individual cells are stiffened with stiffening rings to reduce Lorentz
force detuning. This detuning is gradient-dependent and under steady-state condition
proportional to the square of the electrical field. However, the TESLA cavities are op-
erated in pulsed mode. Building up a field in a cavity results in a dynamic behavior of
the resonance frequency from the initial to the final state. This is due to the inertial
mass of the cavity walls. The transient behavior is discussed in detail in chapter 3.4. On
account of repetitive excitation of the cavities, Lorentz force detuning is predictable from
pulse-to-pulse. The variation of amplitude and phase of the RF field can be considered
correlated from cavity to cavity. The calculated energy spread induced only by Lorentz
force detuning without RF feedback is op/E ~ 2.8 - 1073 for accelerating gradients of
Euee =25 MV/m at the end of the linac (TESLA 500) [Mos 95].

2.1.3 Calibration Error of the Vector Sum

RF sources like klystrons are expensive devices. The experience with existing klystrons
has shown that many smaller units are more expensive than fewer high-power klystrons.
A reduction of capital investment is to be expected if a large number of cavities are driven
by one single klystron. In TTF / TESLA, it is planned to supply 32 cavities by a single
10 MW high-power klystron. For this reason, the RF control system has to control the
vector sum of the accelerating fields of a control section of 32 cavities. Calibration errors
in amplitude and phase of these individual fields result in an additional energy spread in
the presence of microphonic noise. The measured vector sum and the actual vector sum
seen by the beam differ on account of these errors. Even if a control system stabilizes
the measured vector sum perfectly, the microphonic noise results in a different actual
vector sum from macro-pulse to macro-pulse. This leads to different energy gains per
control section. A control section is a string of cavities whose vector sum is controlled by
one feedback system acting on the klystron which feeds the cavities. In Figure 2.2, the
schematic of the measured and actual vector sum of eight cavities is displayed.
Simulations with different levels of microphonic noise have been carried out. The
resonance frequencies of an ensemble of cavities have been assumed to be Gaussian dis-
tributed from pulse to pulse in the given microphonic range. This results in different
amplitudes and phases according to the resonance curves of the cavities. Table 2.1 shows
the required amplitude- and phase-calibration accuracy for two different acceptable rela-
tive energy gain errors for different strings of modules. The energy gain E| is the energy
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Figure 2.2:  The measured vector sum of eight cavities with amplitude and phase
calibration errors differs from the actual vector sum of the accelerating
fields as seen by the beam. In the presence of microphonics, the actual
vector sum fluctuates from macro-pulse to macro-pulse even with perfect
amplitude and phase control.

which a particle gains by the given amount of cavities while (AE,),n;s is the according
energy gain error caused by calibration errors of the vector sum. It has become evident
that gradient calibration errors contribute much less to the energy gain error than phase
errors. This is shown in Figure 2.3 where 16 cavities are fed by one klystron. In the left
diagram, the resulting energy gain error is plotted versus the amplitude calibration error.
Thereby it is assumed that the phases of the individual cavities are calibrated within +1°.
The right diagram shows the reversed case where the energy gain error is plotted versus
phase calibration error. The amplitude calibration error is in the range of +£10%. The
loaded @y, is set to 3 - 10° and the microphonic noise level to £10 Hz (rms). Each point
(cross) in the plot represents the following: a set of amplitude and phase calibration errors
within the given range has been chosen and kept constant. Then, microphonics causes an
energy fluctuation due to these calibration errors. The resulting rms energy gain error is
plotted as a cross.

To meet the energy spread requirements, an appropriate calibration method for the
vector sum has to be applied. It is evident that the more cavities are fed by one klystron,
the more relaxed the requirements for the calibration of amplitude and phase are. It
should also be mentioned that the total energy spread caused by vector sum calibration
errors decreases with the square root of the number of cryomodules in a control section.
The energy gain errors are presumably uncorrelated (microphonics is the most relevant
reason). For example: an energy gain error of 4 - 10™* per controlled vector sum of a
control section results in an energy spread contribution of 2.3 - 107 (TESLA 500 with
N=308 klystrons).



gradient calibration error
1% | 5% [10% | 15%
(AEEg)rms <2.10-4 microphonics tolerable phase calibration error
g of (peak values)

40 Hz — — — —

8 cavities 20 Hz 0.2° - - -
10 Hz 0.9° 0.8° 0.7° 0.5°
5 Hz 1.7° 1.7° 1.6° 1.6°

40 Hz - - - -

16 cavities 20 Hz 0.4° - - -
10 Hz 1.2° 1.1° 1.0° 0.8°
5 Hz 2.4° 2.4° 2.4° 2.4°

40 Hz 0.05° - - -

24 cavities 20 Hz 0.5° - - -
10 Hz 1.4° 1.4° 1.3° 1.1°
5 Hz 2.8° 2.8° 2.8° 2.8°

40 Hz 0.1° - - -

32 cavities 20 Hz 0.6° - - -
10 Hz 1.6° 1.6° 1.5° 1.4°
5 Hz 3.3° 3.3° 3.3° 3.2°
(AEg)rms 4.10-4 tolerable phase calibration error

- E, <% (peak values)

40 Hz 0.2° - - -

8 cavities 20 Hz 0.6° 0.2° - -
10 Hz 1.7° 1.7° 1.7° 1.5°
5 Hz 3.6° 3.5° 3.4° 3.4°

40 Hz 0.4° - - -

16 cavities 20 Hz 1.0° 0.6° - -
10 Hz 2.3° 2.3° 2.3° 2.2°
5 Hz 4.7° 4.7° 4.6° 4.6°

40 Hz 0.5° - - -

24 cavities 20 Hz 1.2° 0.9° - -
10 Hz 2.8° 2.8° 2.8° 2.6°
5 Hz 5.7° 5.7° 5.6° 5.6°

40 Hz 0.6° - - -

32 cavities 20 Hz 1.3° 1.2° — —
10 Hz 3.3° 3.3° 3.2° 3.2°
5 Hz 6.5° 6.4° 6.4° 6.4°

Table 2.1:  Vector sum calibration requirements for amplitude (gradient) and phase of
a 9-cell cavity to meet the required rms energy gain error. Microphonics is
assumed to be Gaussian distributed with width o¢. Amplitude and phase
calibration errors of the vector sum are uniformly distributed in the given
range (peak value). A bar indicates that the required energy gain error
cannot be reached with the according gradient calibration error.
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Figure 2.3:  Left: Energy gain error versus gradient calibration accuracy for the vector
sum control of 16 cavities. The phases are calibrated within +1° and the
microphonic noise level is +10 Hz (rms).

Right: Energy gain error versus phase calibration accuracy for the vector
sum control of 16 cavities. The gradients are calibrated within +10 % and
the microphonic noise level is £10 Hz (rms).

2.1.4 Bunch-to-Bunch Charge Fluctuations

Superconducting cavities with high loaded quality factors ()7 possess large characteristic
time constants 7. As a consequence, the filling times of the cavities from zero to the
nominal accelerating field are several hundred microseconds. A bunch passing through
the cavity with a high bunch charge extracts energy, which results in a small, immediate
drop of the accelerating gradient called a transient of the amplitude. This energy has to
be supplied by an RF power source before accelerating the next bunch. The cavity voltage
rises again with the time constant 7. The result is that the beam imposes a profile on the
gradient. The bunched structure of the TTF beam current produces a sawtooth-like profile
where a klystron fills up the cavity again between the bunch spacing of one microsecond
(injector IT). The drop of the gradient is 1.4 - 10~ at 25 MV/m with a bunch charge of
8 nC. As a consequence, the transient amplitude of a varying beam current changes from
bunch-to-bunch on account of the extracted energy being different. Therefore, the bunch-
to-bunch energy spread increases. In contrast to fast bunch-to-bunch charge fluctuations,
slow charge variations resulting in a slow cavity field variation can be compensated for
by a feedback system. Fast bunch-to-bunch charge fluctuations will increase the energy
spread linearly since the transient amplitude is directly proportional to the bunch charge.
Hence, the gradient in the cavity varies. The expected bunch-to-bunch energy spread
contribution with feedback loops for 10 % charge fluctuations is (ox/F) ~ 1.51 - 10~*



for TTF and (og/E) ~ 1.11-10~* for TESLA 500 [Mos 95].

2.1.5 Non-linearity of Field Detector

The common control loop of an ensemble of cavities with slightly different loaded ()1 and
mechanical properties (Lorentz force constant K, mechanical time constant 7,,) results
in a time varying gradient distribution. Microphonics modulates the initial resonance
frequencies of the cavities. The consequence is different gradient distributions from macro
pulse to macro pulse. RF field detectors like Schottky diodes or RF mixers are therefore
operated at different working points on their characteristic input-output curve. Non-
linearities of these devices result in a time varying measured vector sum error. Applying
feedback control can control only the measured vector sum. Hence, the bunch-to-bunch
energy spread varies within a macro pulse. The linearity requirements of the field detectors
strongly depend on the feedback system. The more sophisticated the controller, the less
stringent the linearity requirements are.

2.1.6 Klystron Saturation

Klystrons show input-output non-linearities known as saturation. A typical saturation
curve is plotted in Figure 2.4 which is the type of klystron used for the first accelerating
modules in the TESLA Test Facility. The electronic efficiency of this klystron is 41%.

| 5 [
% A nominal power for
= 16 cavities,
2 4 Bz 25MVIm,
c | o= 8 MA
2 ol
g
-]
O i1 Klystron TH 2104 C
o (Thomson)
% 10 20 30 40

RF Input Power [W]

Figure 2.4:  Klystron saturation curve of the 5 MW klystron TH 2104 C made by
Thomson (TTF klystron). The power of the output RF signal is plotted
versus the input RF signal. The cathode voltage is 126 kV and the current
95 A.
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With a cathode voltage of 126 kV and a beam current of 95 A, the saturated RF output
power is 5 MW. The required RF power for 16 cavities at gradients of 25 MV /m and 8 mA
beam current is 3.32 MW (see Figure 2.4). To reduce the operating cost, it is desirable
to reduce the cathode voltage as much as possible. For TTF, a 30% peak power reserve
is needed for amplitude and phase control. Additionally, allowance is made for a 10%
power margin to saturation [Ga]. The nominal operating point will be about 40% below
the maximum output. The operation will be in the non-linear regime of the klystron
causing a power-dependent gain. It is known from control theory that the residual error
with a proportional feedback controller is inversely proportional to the gain factor. If the
required power varies during a beam pulse (for example due to Lorentz force detuning),
this will result in a varying gradient because of the proportional gain. RF control close
to the saturation of a klystron is fairly complex and demands sophisticated controllers.
Usually, neither analog feedback systems nor even digital ones with proportional gain take
into account the non-linearity of the klystron input-output curve. As a consequence, this
will result in an energy spread within the macro-pulse.

2.1.7 Phase Noise from the Master Oscillator

Two types of RF control systems are commonly used in accelerators: firstly, driven systems
in which a signal from a reference oscillator (master oscillator) is manipulated to act as
a source signal in order to drive a cavity; and secondly, systems using self-excited loops
whose phase is locked to an external reference oscillator during beam acceleration. In both
systems, the phase noise from the reference oscillator results in a measured phase noise
of the cavity field probe signal. A control system tries to compensate for this, thereby
imposing a real phase jitter on the beam which yields a bunch-to-bunch energy spread.

2.1.8 Influence of Bunch Length

Due to the finite bunch length, the RF accelerating voltage seen by a particle depends on
its position in the bunch. This creates an intra-bunch energy spread. The effect increases
when the bunch is accelerated off-crest, i.e. accelerating phase is different from 0°. The
0° are defined as the phase with respect to the maximum accelerating voltage. A more
precise definition is given in chapter 3.3. The sign of the accelerating phase is shown in
Figure 2.5. In storage rings, it is necessary to accelerate the beam off-crest to achieve
stability with respect to synchrotron oscillations. The beam has a phase ¢, with respect
to the maximum accelerating voltage. Even in linear accelerators it might be desirable
to accelerate off-crest by a few degrees to compensate for the induced wakefields which
result in an intra-bunch energy spread (see next subsection).

2.1.9 Higher Order Modes

Standing wave RF accelerating structures are usually operated in the fundamental res-
onance mode T M1y (accelerating mode). The wakefields of short bunches passing the
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Figure 2.5:  Effect of RF curvature on bunches of finite length. The beam phase is
defined with respect to the on-crest operation (phase 0°).

cavity can excite high order modes. These modes perturb the field distribution of the
accelerating mode. Higher order modes ("M, T'E) can cause an intra-bunch and intra-
macro-pulse energy spread. The estimated bunch-to-bunch energy spread in TESLA due
to wakefields and due to the effect of the finite bunch length is in the order of 5 - 10™*
[CDR 500].

2.2 Requirements on the RF System

The RF control system for the TESLA Test Facility is a prototype for the TESLA lin-
ear collider. For the sake of the desired high luminosity in the interaction point and for
the sake of the restricted acceptance of the accelerator optics (particle losses have to be
minimized), the energy fluctuations have to be kept small. The goal for TESLA 500 is
an energy spread of 2 - 1072 [CDR 500]. Besides that, the extra power needed to com-
pensate for the effects of microphonics and Lorentz force detuning has to be minimized.
Additionally, reliability, operability, robustness and maintainability in the design have to
be taken into account.

12



2.2.1 Amplitude and Phase Stability

The energy spread at the interaction point is the result of different sources as discussed in
the previous section. Gradient and phase fluctuations will result in bunch-to-bunch energy
spread. It is desirable to keep it below the intra-bunch energy spread of 5-10~*. The
influence of small correlated amplitude and phase errors is given by the formula [Mos 94]

O 1 1 (O’ A ) 2 1 1
=) = —(1 4 cos?2 — ) +=(1—cos2 2+ —(3cos2¢, — 1)o? .
(E) cosqﬁb\/?( ®s) P 2( bb)02 4( ¢y — 1)o,
Here, Gaussian distributions for amplitude and phase errors are assumed. The quantity
(%) denotes the relative amplitude rms error while o, describes the rms phase error.
A is the amplitude (gradient) of the accelerating field in the cavity. With regard to the
special case of on-crest acceleration (¢, = 0), the previous formula simplifies to

o oa\2 ot
E A 2
If the amplitude and phase errors of the cavities are uncorrelated, the proper statistical

average is given by this expression divided by the square root of the number of control
sections V.

1 2 4
(%) - VN (%) + % (uncorrelated errors)

For TTF with its 8 cryomodules (8 cavities each) one klystron supplies RF power for 32
cavities resulting in N = 2. For TESLA 500, a total number of N = 308 klystrons for
each linac (positron and electron linac) is planned (32 cavities per klystron). The total
energy spread from correlated and uncorrelated errors is

(%) =(5).. ~ (3).

E E corr. E uncorr.

Assuming that correlated field fluctuations can be suppressed to a value better than
3 - 1074, the uncorrelated fluctuations are in the same order (also 3 - 107* ) to meet
the relative bunch-to-bunch energy spread of 5-10~%. In TESLA 500, the requirements
for the uncorrelated errors are therefore /N -3 -10"* ~ 5103, In Figure 2.6, the
energy spread is plotted versus the uncorrelated phase and amplitude errors. In the
upper plot, the phase dependence of the energy spread is calculated for two different
uncorrelated amplitude errors. The dash dotted line indicates acceleration on-crest, while
the solid line stands for injecting the beam -3° off-crest with respect to the maximum
acceleration voltage. In [Mos 95] it has been shown that this is the optimum beam phase
to compensate for wakefield effects. The lower plot shows the amplitude dependence of
the energy spread for two different uncorrelated phase errors. The influence of amplitude
errors on the energy spread is bigger than that of phase errors. Figure 2.7 displays the
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same observation for correlated errors. From these two figures it can be concluded that
suppressing uncorrelated amplitude and phase errors to a value better than 5- 1072 and
0.5°, respectively, and suppressing correlated amplitude and phase errors to a value better
than 3-107* and 0.1°, respectively, is needed to meet the requirements to stay below the
tolerable upper limit for the energy spread.

2.2.2 Operational Requirements

The turn-on procedure of the RF control for a section of 32 cavities driven by one klystron
is quite complex. Therefore, it is desirable to have automated procedures for the calibra-
tion of the vector sum, the adjustment of the phases at the individual cavities and for the
control of the cavity frequency tuners. Moreover, the amplitude and phase of the acceler-
ating field need to be changed frequently during operation. Further consideration needs
to be given to the importance of integrating the RF control system into the framework of
the overall linac control system, whilst preserving the possibility of stand-alone operation.
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2.3 Design Choices for the Control System

Control of the RF power normally takes place on the low-power level before the ampli-
fication of the signals. The main components are detectors for amplitude and phase of
the individual cavity fields, the controller for the feedback itself, and actuators to control
the incident wave to the klystron and thus to the cavities. There are different ways to
drive an RF cavity: the driven feedback system, the self-excited loop and the direct RF
feedback. In the first two cases, one can choose to control amplitude and phase or the
real and imaginary parts of the incident RF vector. In subsection 2.3.2, the appropriate
choice depending on the requirements will be discussed.

2.3.1 Options to Drive an RF Cavity
”Driven” Feedback

The basic element of a driven feedback is an RF reference source, the so-called master
oscillator (MO). The RF output signal of the master oscillator is controlled by actuators
which act on amplitude and phase before the RF wave is amplified, for example by
a klystron, and guided into the cavity. A pick-up antenna in the cavity detects the
accelerating field, and detectors, which can be gradient and phase detectors, provide the
input signal to the feedback controllers. These detectors extract amplitude and phase of
the fast oscillating RF field. The setup is shown in Figure 2.8.

Master
Oscillator Phase Amplitude Klystron
Controller Controller
O =M= H
Phase
sapor] @

Amplitude Detector
(Gradient Detector)

Phase
Detector [, S—

Amplitude

Set Point I_ Cavity

“Driven” Feedback

Figure 2.8:  Basic principle of a driven feedback system. The reference signal from a
master oscillator is controlled by actuators. This signal is amplified by a
klystron and guided to an RF cavity.
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Self-Excited Loop

In the self-excited loop, the cavity field-probe signal is directly applied to the actuators
(phase and amplitude controllers) which control the incident wave. Figure 2.9 shows the
principle of a self-excited loop. The loop phase ¢, has to be set in such a way that the

Phase Amplitude Klystron
Limiter Controller Controller
yaun () A —{

Amplitude Detector
(Gradient Detector)

& J<—Loop Phase

h
Amplitude
e —= L0000 0004
Oscillator Phase
S ¢ Self-Exited L oop
f Phase
Detector

Figure 2.9: Basic principle of a self-excited loop system.

condition for self-excited oscillation is fulfilled, i.e. it has to be a multiple of 27. Then,
the oscillations of the RF field in the cavity start by themselves from noise on the incident
wave. A limiter in the loop ensures that the amplitude remains bounded. As in a driven
feedback system, field detectors extract amplitude and phase information from the RF
signal and feed it to the feedback controller. The phase of the cavity is regulated with
respect to an external master oscillator.

”Direct” RF Feedback

In contrast to the two previous systems, the cavity RF field probe signal is directly
compared with a reference signal on the RF level. In the direct RF feedback system
(Figure 2.10), no gradient and phase detectors are necessary. Combining the two RF
signals results in an error signal which drives the klystron. Amplitude and phase of the
reference signal are set by actuators.

2.3.2 RF Vector Control

Apart from the direct RF feedback all other introduced RF control systems include ele-
ments to detect amplitude and phase of the RF field. In general, an RF field is described
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Figure 2.10: Basic principle of a direct RF feedback system.

by a vector in the complex plane. This RF vector can be represented either by its ampli-
tude and phase with respects to a reference oscillator or by its real and imaginary parts.
These are sometimes called the I (in-phase, 0°) and the Q (quadrature, 90°) components
of a vector which is a commonly used but misleading notation. The appropriate choice of
representation depends on the requirements. An amplitude detector is usually a Schottky
diode and a widely used phase detector is a double balanced RF mixer. The determina-
tion of real and imaginary parts is completely based on RF mixers. Phase noise from the
master oscillator directly influences the measurement of real and imaginary parts while
in the traditional amplitude and phase control only the phase measurement is affected.
If the disturbance of the RF field is mainly on the amplitude, gradient and phase control
might be preferable. On the other hand, vector control by real and imaginary parts is
preferred in systems with large errors in amplitude and phase where sufficiently high feed-
back gains have to be used. It should be noted that a phase controller can cause a phase
correction in a wrong quadrant if the gain is too high (for example, phase error of 2° with
a feedback gain of 100 results in a phase correction of 200° which is the third quadrant).
Besides that, the phase is not well defined if the input signal of the phase detector is too
small. As a result it is not possible to control the zero set point with amplitude and phase
controllers.

In the linac of the TESLA Test Facility the cavities are operated with a driven feedback
system. Lorentz force detuning and microphonics lead to considerable amplitude and
phase disturbances in the superconducting cavities with their high quality factors. The
expected errors are in the order of a few percent for amplitude and above 20° for the phase
during the 800 s long beam pulse. Therefore, a vector control has been chosen. RF mixers
decompose the cavity RF vector into the real and imaginary parts. The incident RF wave
is regulated by a vector modulator. In principle, the feedback controller can be realized
as an analog or a completely digital system. In the case of a digital system analog digital
convertors (ADC) digitize the decomposed RF signal from the cavity. A following digital
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signal processing stage performs the feedback algorithm before the calculated actuator
signals are reconverted to analog signals. For the RF control in the TESLA Test Facility
a fully digital system has been implemented. It provides a much higher flexibility and
operability than an analog system. A detailed description is given in chapter 4.
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Chapter 3
Theory of RF Cavities

3.1 Cavity with Beam Coupled to RF Generator

Resonant modes in cavities can be described by means of resonant LCR circuits. A
rigorous justification is given in [Mon 48]. First, we shall concern ourselves with a single-
cell cavity which can be a pillbox in the simplest case. When a particle passes through an
RF cavity, the accelerating field F(z,t) on the cavity axis changes due to the time varying
RF field. The cavity voltage V4, is defined as the maximum accelerating voltage acting
on a particle. The transit time effect is included. This definition implies that the electric
field assumes its maximum when the particle passes the center of the cavity (so-called 'on
crest’ acceleration). The accelerating voltage for a bunch passing the cavity with a time
delay t; (see appendix A.1) is

VaCC(tb) = Viaw - COsp = Vigy - COS(u)tb) .

To feed a cavity with RF power, an input coupler is necessary. Building a linear accelerator
with single-cell cavities would be very expensive, and it would require a great deal of effort
to equip every cavity with a separate coupler. Therefore, several cells are coupled weakly
to a coupled-resonator structure with a single RF feed point. The coupling from cell to
cell can be magnetic and/or electric. The resonator in the TESLA Test Facility consists
of nine electrically coupled cells and is usually called ’cavity’. In Figure 3.1, an equivalent
LCR circuit model with magnetic coupling is shown. A structure with nine coupled
cells has nine normal modes, called passband modes. The corresponding nine resonance
frequencies of a TESLA cavity are shown in Figure 3.2. The passband modes are labeled
by their phase shift from cell to cell. The TESLA Test Facility is operated in the -
mode, which means that the RF fields in adjacent cells have a phase difference of 7. The
passband mode closest to the accelerating mode is the %W—mode which is separated by
approximately 800 kHz. Every passband mode can be modelled by an LCR circuit which
is parallel to the others. The quantities L, C and R refer to the whole nine-cell structure.
The following considerations are restricted to the m-accelerating mode.

An RF field induces surface currents in the cavity walls resulting in power dissipation
Pyiss. Modelling a resonant cavity by an LCR circuit, the resistor R is defined as a resistor
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Figure 3.1:  Equivalent circuit representation for a chain of nine magnetically coupled,
resonant single-cell cavities.

in which the same power is dissipated as in the cavity.

1V, Ve
Piss:_'ﬂ:ﬂ- 3.1
45T 9 "R T Ry (3:1)

In linear accelerator physics however, a resistor Ry, is defined as the shunt impedance of
a cavity. It is also defined by the power dissipation in the cavity but includes the factor
1/2 of the time average. The definition (3.1) of the shunt impedance Ry, is widely used
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Figure 3.2: Passband modes of a TESLA nine-cell cavity [Kre].
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in linear accelerator physics but confusing in describing a cavity by an LCR circuit. The
unfortunate definition of a normalized shunt impedance (r/Q) (which will be defined later
on) is based on Rg,. Throughout this thesis, only the resistor R is used, whilst the linear
accelerator definition of the normalized shunt impedance is kept. This leads to the strictly

applied relation . .

R=§-R5h=§'(%)'QO (3.2)
The excitation of the cavity by the generator and by the beam can be described by current
sources in the equivalent circuit model. For relativistic particles (v & ¢), the beam current
remains unchanged during acceleration in the cavity. If the beam is non-relativistic, the
cavity field will raise the velocity of the beam and thereby also the beam current. In
such a case, the beam current becomes a function of cavity voltage. In the following
only relativistic beams will be considered. Our RF power source is a klystron. It can
be modelled as an output cavity driven by a current source Iy, as shown in Figure 3.3.

The couplings from the output cavity of the klystron to the transmission line and from

Vior, ltor
o eeees g
-
N\ | Vief, lref 1 77D
S a3y 3T 7 O
Ky ly
[ o eene o—
klystron cavity
_ coupler ~ coupler _
output cavity transmission cavity
of klystron line with beam

Figure 3.3:  Model of a cavity with beam coupled to a klystron by couplers and trans-
mission lines.

the transmission line to the cavity are represented by lossless transformers. The input
coupler of the cavity has a transformation ratio of 1:N (see Figure 3.4). The transformation
equations are

Vo=N-V;, Iy =—-1 (3.3)

1
N
and therefore input and output impedance are related by

ZQ == N2 - Z1 . (34)

The transmission line can be a waveguide or a coaxial cable. In the transmission line,
forward and backward travelling waves occur due to mismatches of the input and output
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Figure 3.4: Input coupler representation as an ideal transformer.

impedances. For the present purpose, it is sufficient to disregard the complexities of
microwave generation in a klystron and to represent the klystron as an RF current source
coupled to a transmission line. This provides the simplified circuit diagram of Figure
3.5. A circulator is inserted into the transmission line which directs the RF wave from

reference planes

A B

I ! \
tranlsmlsson circulator | transmission |
Ine 2 | line :
A | SRR R
| | i
lg \ ™~ load | | RT 7\
g RF I (- I |
generator Zy | P S | b
- - i - i an\/
| coupler | cavity
- IN <«

Figure 3.5:  Simplified model of cavity coupled to an RF generator by coupler and
transmission lines.

the generator to the cavity and deviates any waves which are reflected at the cavity to a
matched load with impedance Z,. This is necessary since the klystron may be destroyed
by reflected waves. In the following, the circuit model is split up into three sections which
are separated by the reference planes indicated in Figure 3.5.

When viewed from the generator (left side of reference plane A), the transmission line
is always properly terminated (Fig. 3.6a) since the circulator guarantees that no reflected
wave is traveling back to the klystron.
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Looking towards the cavity at reference plane B, the transmission line is terminated
by the transformed cavity impedance Z!

cav*

Z’:1

cav N2 ) ZCCM)

All voltages, currents and impedances on the generator side of the coupler are labeled with
a prime with the exception of the transmission line impedance which is denoted by Zj.
Unprimed quantities correspond to the ’cavity side’ of the coupler. The equivalent model
at reference plane B is shown in Figure 3.6b. In this, the beam current [ is transformed
to Ij at the generator side which is fed directly at the cavity impedance Z,,. It is only
the generator current that is conducted to the cavity through a transmission line.

In circuit 3.6¢, all currents and voltages are transformed to the cavity side. Moreover,
the transmission line, which is properly terminated by the load Z;, acts as a parallel load
to the cavity resistor R. The energy stored in the LC circuit is only partly dissipated in
resistor R (representing the losses in the cavity walls) but the major part is coupled out
and dissipated in the external load Z,,;. All other losses in the coupler, the transmission
line itself, etc. are included in the load Z.;. This representation is very useful when
describing the behavior of the cavity; however, one has to keep in mind that the model
shown in Figure 3.6¢ uses a fictitious generator current fg. The real current supplied by
the klystron is only I, which will be derived in section 3.3. It will be shown that the
fictitious current is related to the true current I, (with I, = (1/N) - I, from Figure 3.6a)
by

I,=21,. (3.5)

The fictitious current fg is introduced to represent the effect of the circulator as seen from
the cavity. The model of Figure 3.6c abandons the description with the transmission line.
The current fg has to be derived from the RF power delivered by the generator.

In section 3.3, the power calculations are carried out with the transmission line model
shown in Figure 3.6b.

3.2 General Cavity Equations and Definitions

Since a cavity is a resonant device, it is useful to define a measure for its quality, the
so-called quality factor (Q defined as

stored energy in cavity =~ woW

Q=2

g = 3.6

dissipated energy per cycle Py (3.6)
where W is the stored energy, wq is the resonance frequency, and Py the dissipated
power. When only the losses occurring in the cavity walls caused by the RF surface
resistance (which are also present for superconducting materials) are taken into account,

one arrives at the unloaded quality factor ()y. Taking into account basic formulas from
circuit theory (W =1/2CVE ; Puss = VZ/(2R) ),
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Figure 3.6:  Subdivisions of the circuit diagram of Figure 3.5.
a) Generator side. On account of the circulator, the transmission line is
always properly terminated with forward travelling waves only.
b) The transmission line from the circulator to the input coupler of the
cavity is terminated with the transformed cavity impedance Z],, which
in general is different from Zj.
c¢) The cavity circuit. The external load Z; is transformed to the cavity
side of the coupler to Z.,: = N? - Z,.
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the quality factor ¢y can be written as

0,2 1OV
T 1w
2 R

where 1/ is the amplitude of the oscillating voltage and 7T the time period of an RF cycle.
In terms of the resonance frequency of an undamped LC circuit wy = \/%—C, the unloaded

quality factor )y can be expressed as

R wOW

Qo = woRC = Lo = P, (3.7)
) 1
(Wlth Cc = L—wg)

Energy is not only dissipated in the cavity walls but also extracted through the power
coupler and dissipated in an external load. An external quality factor QQ..; is defined as

stored energy in cavity  wW

Qewt =2 (38)

T =
dissipated energy in external devices per cycle — P

where P,,; is the dissipated power in all external devices. Finally, the loaded quality
factor ), is defined as

stored energy in cavity  woW

@r = 7Ttotal energy loss per cycle Py, (3.9)
Energy conservation yields
Piot = Puiss + Pet (3.10)
and with eq. (3.7), (3.8) and (3.9)
L = L + ! (3.11)
RQr Qo Qext

For superconducting cavities, the unloaded @)y is typically several orders of magnitude
larger than the external Qezt (Qo > Qext), 50 QL X Qeyt-

As displayed in Fig. 3.6¢c, the transformed external load Z,,; acts as a parallel resistor to
the cavity resistor R. Therefore, these two resistors can be replaced by a single resistor
Ry, the loaded shunt impedance.

1 1 1

R_L:R +Zewt

(3.12)

The load Z.,; is a real quantity (characteristic impedance of a coaxial cable: 50 2 (real)).
From equation (3.7) we obtain



The ratio % only depends on the quantities L, C' and wy. It is characteristic of the geom-
etry of a cavity and independent of the surface resistance. Unfortunately, the definition
is made in terms of the shunt impedance Ry, instead of R leading to the definition (with

equation (3.2))
T L Rsh . 2-R
Q- Qo Qo
The shunt impedance of the TESLA cavities is 1041 €.
Instead of the transformation ratio 1:N, it is useful to describe the coupling between
transmission line and cavity by the so-called coupling factor 3. This factor 3 is defined

as the ratio of the resistor R in the LCR circuit to the transformed external load Z..;

R R R
s A N=\sz 0

With this definition, equation (3.12) can be written as
R

(3.13)

= — 1
B= (.15
and therefore (with eq. (3.13))
_ Qo
=115

The coupling factor 3 is frequently used to describe the behavior of normal conducting
cavities where (3 is in the order of one. For superconducting resonators with Qo > @y,
the coupling factor 3 is in the order of 10® to 10*. For TESLA cavities, the objective is to
reach unloaded quality factors of more than 5 - 10° while the loaded @y, is 3 - 10°. In the
following, we will see that the properties of a loaded superconducting cavity are mainly
determined by the loaded @, except for the cryogenic load (RF loss) which depends only
on (. In this case, the relevant quantities are (r/Q) and @ instead of 3. Therefore,
both representations will be given.

The preceding definitions are used to calculate the stored energy in a resonator with
accelerating voltage Vg, (With eq. (3.1), (3.7), (3.13)) as

Taking the 9-cell TESLA cavity as an example, we get for the stored energy at V_,,=25 MV,
(5)=1040 Q and f = £ = 1.3 GHz

Q or

W ="7351]

The starting point for modelling cavities in an RF system is the externally driven LCR
circuit. The external load is included in R;,. Inserting in Kirchhoff’s rule

Ie + Ip + I = 1
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the formulas I; = V/L; Ip = V/RL; Ic = CV and replacing the inductance L and

capacitance C by the quantities @) and wy (ﬁ = % and % = w}), we obtain the
differential equation for a driven LCR circuit.
Vit) + V() + V) = i)
R.C LC - C
V(t) + =2V(t) + WBV(t) = “’ORLf(t) (3.16)
Qr Qr

If the applied current I is harmonic ( I(t) = Iysin(wt) ), the driving term on the right
side of equation (3.16) will be proportional to cos(wt), and the stationary solution of the
differential equation (3.16) (which is the particular solution) is given by

V(t) =V -sin(wt + 1) (3.17)
ith  tany = R (i— 0) (3.18)
wi an = BFo- {7 w .
and vV o= firlo (3.19)

\/1+ (R, (& - wC)|”

The phase angle 1) between the driving current I and the voltage V is defined as the
tuning angle of the cavity. Replacing the quantities L and C with wy and @, (similar as
in eq. (3.7)), we get

R
tany = “ 1t —i‘woRLC:QL (ﬂ _ i) (3.20)
w wol wy ~—— w wWo
W—/ QL
QL
5 R R,
vV o= L0 L0 (3.21)

\/1+Q% (% _ i)Q - \/1+tan2w

wo

If the generator frequency w is very close to the cavity resonance frequency wy, we can
rewrite eq. (3.20) and (3.21) to

A A
tany o~ 20,29 = 90,2 (3.22)
w f
. R,
V(Aw) = L0 —
14+ (2Qr%7)?
where Aw = wy — w. The frequency dependence of the amplitude is known as Lorentz

curve and is shown together with the phase in Fig. 3.7. The bandwidth w;/, of a loaded
cavity is defined as the frequency bandwidth where the voltage drops to 1/4/2 (-3 dB)
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W

Figure 3.7:  Resonance curves for amplitude and phase of a cavity. The -3 dB point
is marked in both diagrams.

of its maximum Vy = R;I,. The stored energy therefore drops by half. From equation
(3.21) and (3.22), we get

tan(y) = 1 = =g

(A)]_/Q @ .
Alternatively, amplitude and phase can be deduced directly by means of complex
impedances (appendix A.2).

3.3 Dissipated and Reflected Power of a Cavity

Part of the RF power supplied to a cavity can be reflected at the input coupler. The
amount of reflected power depends on the coupling ratio and on the presence of beam in
the cavity. All voltages and currents are represented by complex quantities which will be
written in bold-face letters.

3.3.1 Cavity without Beam Loading

Our first approach is concerned with a cavity without beam loading coupled to a lossless
transmission line with wave impedance Z, . The wave equations of the transmission line
are derived in A.3 and read

o’V Y 0°1 0%1
— LI ! i LI I_ .
Ox? ¢ o2’ Ox? ¢ ot?

(3.23)
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According to A.3, the general solution of these two equations can be written as

transmission line:

V(z,t) = Vyu(z,t) + Viep(z, t) (3.24)
— v_}_ei(wtfka:) + V_ei(wt—kka:) (325)
I(z,t) = Ifor(:r,t) + I,ef(x,t) (3.26)
A j(wi—kz) V_ i(wttk)
—  _* i(wt—kx) _ " — ji(witkr 92
Z e 7 e (3.27)
with forward wave:
Vie(z,t) = Vet (3.28)
V+ o4 V (.73 t)
1;,, — T i(wt—kz) _ Jor\4, 92
f (.T, t) Z() € Z() (3 9)
and reflected wave:
Viep(z,t) = V_eilwtha) (3.30)
vV_ Vies(,1)
IT‘E t - __ - i(wtt+kx) — _ ref\<4, 3.31
fat) = e —ep (331)

The minus sign of I, indicates the counterflowing current while the voltages of forward

and backward waves add up.

The transmission line is terminated with an impedance Z;,, at the input of the power
coupler. To determine the forward power (incident towards the cavity) and the reflected
power (due to a mismatch to the line impedance), the LCR circuit of the cavity has to
be transformed to the generator side of the coupler.

In order to calculate forward and reflected waves, the model shown in Figure 3.6b
is applied. The defined tuning angle ¥ (eq. (3.20)) is the angle between the forward
current I’ (which is the driving current of the circuit) and the voltage across the loaded
LCR circuit V. . The cavity impedance Z.,, (cavity side of coupler) at the end of the
transmission line is similar to equation (A.4) but with Ry having been replaced by R.

The impedance of the unloaded cavity is

anv = R
1—3iR (ﬁ — wC)
with equation (3.18) and (3.15)
s = (o) s (-0
any =t wL Y - (1+8) \wL v
= Ty = i (3.32)

1—i(f+1)tany
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Transformed to the waveguide side we obtain

1
Zéa'u = m : anv
or with equation (3.14)
BZo
Z, = — " Zeaw
cav R
Z,
Zl = b2, (3.33)

cav 1—4(8+1)tane
For the transformed cavity voltage we obtain

VI = ;‘or + V;"ef (334)

cav

and for the transformed cavity current

! !
. for ref

Ilccw = Ilfor + I;"ef - ZO ZO

In the equation

7!
V::a,v = Zéa'u : Ilca'u = ZLZU (V}or - ;“ef)

V.,.s is eliminated using equation (3.34). Then

ZI
VI — cav . 2vl
cav Zéav + ZO or
1
I, = —— 2V, .
cav Zéav + ZO or

With Z! . from equation (3.33), the voltage V', and current I  can be expressed as

cav cav cav
23 1 ,

V. = T Tt 7 for(l + itan ) (3.35)
2 1 '

| : Jor (1 1)tan®e — Bt . 3.36

= a1 T 2 (LB D’y —ifany) . (3.30

The power is given in terms of complex voltages and currents by
1 *
P = 3 Re{V -T"}

where Re{ } is the real part and x is the complex conjugate. The forward power is with
! _ V;‘or
IfOT - % ! ! | ! ‘2
1 - V7§ \%
P/ —p i Re{ for for} _ or ]
for = Jer =y Z 27,

32



Furthermore, lecor is equal to the incident power Py, on the cavity side of the coupler
because our assumptions are based on an ideal transformer. This statement is valid for all
power calculations (which means that the prime can simply be omitted). The dissipated
power in the cavity is given by (with equations (3.35) and (3.36))
1 *
P(;iss = Pdiss = 5 RG{V, . II }

cav cav
45 L Vil _ 48 L p
(B+12 1+tan?¢ 27, (B+1)2 1+tan?y '
In principle, the reflected power can be calculated from energy conservation P, = P),co,r. —

P}, but then phase information is lost. Therefore, we determine the reflected voltage
V.. and the reflected current I, first.

Pl

diss

= Pdiss

! _ ) ’
ref cav ~ VY for

1 1
! . ) ‘ I
= G Tr ey (8= 1) = (B+1) tan® § + 28 tan )| V1,

The reflected power is calculated to

1 *
ves = DPref 27 Re{ Vi - Vies} (3.37)
48 1
P .=P., = [1- - - Pror . .
ref d ( (6+1)2 1+ tan? w) / (3.38)

3.3.2 Cavity with Beam Loading

The beam is represented by an additional current generator as shown in Figure 3.6b.
Since the LCR circuit has been transformed to the waveguide side of the coupler, the
beam current has to be transformed as well. A bunched beam provides a pulsed current.
Usually, the DC component I, is quoted. We have solved the transmission line equation
for RF currents and voltages with time dependence e*!. Consequently, we have to use
the Fourier component [, of the beam current at the operating frequency w. For bunches
whose bunch length is much shorter than the bunch spacing, the Fourier component |I,|
is twice the DC beam current Iy (see appendix A.4). It is possible to represent the pulsed
beam current by an RF current generator with frequency w if the beam frequency and
hence the bunch spacing is synchronized to the same reference frequency as used for the
RF generation. Moreover, the bunch length has to be much smaller than the characteristic
time constant 7 of the cavity. The transformation is according to equation (3.3) and (3.14)
given by

I = N-I, (3.39)
L] = N-|L]=2-N-1Iy

, R
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The beam current Ij causes a voltage in the transmission line at Z/, . This leads to a
wave which propagates in backward direction along the transmission line and interferes
with the reflected wave which would exist without beam loading. The solutions (equations
(3.24) to (3.31)) of the transmission line are still valid with the exception that we have an
additional contribution to the reflected current due to the beam. In general, all voltages
and currents are complex quantities. To accelerate beam on-crest, the phase between
the cavity voltage and the beam current is 7. In that case, the beam power is negative,
which is equivalent to extracting energy from the cavity by the beam. The beam phase
is usually defined as being the difference to this phase m. Currents are represented as
complex quantities. Consequently, they have to be added even if the phase difference is

7 because phase information is already included.

Vlcav = V}or + V;"ef (341)
Ilca'u = Ifor + (I;'ef + I;))
! !
for ref !
= —— — I 42
ZO + < ZO + b) (3 )
The cavity voltage V', is related to the current I by
Vlca'u = Zéa?) : Ilca'u ° (3'43)

!

L 1D equation (3.43) we obtain

Eliminating V7., in equation (3.42) and inserting I

ZI
VI — cav . 2vl Z N II
cav Zém) 4 ZO ( or + Zo b)
Véav 1
L, = = T Z 2V, + Zy-1}) .

Finally, we replace Z!,, by the explicit expression from equation (3.33).

1 .
Vlccw = ﬁlf_l'1+tan2w'(1+ltanw)'(2vlw+Z0'I;7)
b 1.1 1

“w " Zy B+1 1+tan’y
(1+ (B+1)tan’ ¢ —iBtany) - 2V, + Zo-1})

The cavity voltage consists of two parts: the generator-induced voltage V| and the beam-
induced voltage V7.

Vlc(w = V'g + V;,
) B 1 .
h V!, = : a 2V
wit v, G111 T4 tany (L+itan) -2V,
1
Vv, = b -(1+itane) - Zy - I

B+1 1+ tan’e
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It has to be kept in mind that there is no reflected wave if we only have a beam current
but no generator current. In this case, the stored power of the beam is coupled out and
propagates along the transmission line. Nevertheless, the backward travelling wave is
labeled with the index of a reflected wave because it is detected in the same way as a
reflected wave. The reflected voltage and current can be calculated as follows

ref = ﬂi1'1+tan2¢'(1+itan¢).<(5_1)+i(§+1)tan¢ }’"JFZO'I;’)
P Vg
ref T ZO .

All the currents and voltages are calculated on the waveguide side of the coupler. In
reality, however, we are interested in the cavity voltage seen by the beam. Therefore, it
is useful to transform the voltages and currents back to the cavity side. For convenience
sake, we will express the forward voltage V', in terms of the generator power P}, = P,.

The transformation equations are (with IV as the coupler transformation ratio, N? = ﬁ—go)
waveguide side of coupler cavity side of coupler
voltages: V' — V=NV
currents: T’ — I=(1/N)-T.

The transformed voltages and currents are calculated to

R 2R- P,
Vi = —Z1gor; Vig| = Vier = g
I ki Vil = Vi 5
R 1 . (B—-1)+i(f+1)tany
p = : (1 : I I
Vres B+1 1+tan?y) (1+itang)) ( g o
R 1
Vew = . (1414t -(21 |
G+1 Trtamy (Titany) (2L + L)
B 1 : R
= . -1+t -2V —1I
F+1 Trtamry (Titany) for T gl
B ” R
= ——.cost-e¥ |2V + =1
B+1 Y-e f 3 b
v, = & .1 (1+itany) - 2T, = Ry (1 + ™)1
g B+1 1+tane 9= g
= RLQIg-CosdJ-e“/’=Vgr-cos¢-e“/’
Vg = 2R.], (on-resonance amplitude due to generator)
R 1 1 .
V, = : (144t T, =Ry - (1 ) LT
’ B+1 1+tan?4 (1+itany) -1, RLQ( T ) b
= Ry, -cosy-e™ =V, -costp- e
V. = RpI, (on-resonance amplitude due to beam)
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p 206 P
Iy = Lo =3 Viers Tl = [Tporl = Iy = Ipor = =2
1 B
Ire = _—V're = __V're
f NQZO f R !
1 1 .
Icav = -(1+(ﬂ+1)tan21/1—zﬂtan1/))-(QIg—l—I,,)

B+1 1+tan®e
The general formula for the power emitted by a cavity with beam loading is given by

1 *
Prey = 2—ZOR€{V£ef-Vi«ef (3.44)
2

1 1 ’ 7
= G0 Tray ((5—1)+i(ﬂ+1)tan1/1)\/Fg.efz@+ /%Ib

The angle © is the angle between the positive direction of the real axis and the generator

current I,. It is determined by V,, V;, and V,, (see Figure 3.9). In terms of amplitudes

it can be expressed by

Ve + Vi — Ve
2VVs

cos© =
With the formulas

Vo = Rrlycosy 3 Vy=2Rpl cosv ;
‘/acc = Veav COS ¢b ; Ib = 2IbO

we get
2 4 72 Vaee
Ig + Ibo " (2RL cosp cos ¢y )2
2141y ’

For superconducting cavities, the description of the voltages, currents and powers in terms
of [ is not very useful. Since the external ().;; is much smaller than the unloaded @,
nearly all the properties depend only on the loaded ;. For the special case of Qg > Qe
(which means 3 > 1), the formulas can be expressed by the quantities @7, and (6) using
the approximations

cos© =

R_R _ 1/, 8
BN ArT 2 (@)@ T~ !
Then, we get
1/, ,
Vfor = 5 (Q)QL'Ifora ‘Vfor|:Vfor: <§)QLPg
1 1 ) , .
Vier = 3 1+tan2w-(1+ztan¢)-(Q)QL-((I—i-ztanw)Ig + I)
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1 1

V,, = ém-(l—i-itanw)-(é)QL (21, + I,)
Vcav = Vg + Vb
1 )
= - . ; B I = e ([ .
vV, = T (1+itan) (Q)QL I,=cosy-e (Q)QL I,
= cosyp eV, =1 (1 + em’) -V
1
Vo = —F———" 5)Qr-Py=2cos¢-/(5)Qr - P,
R . B
Vg = 2V, = (6) Q- 1, (on-resonance amplitude due to generator)
1 1
_ = ) ; ) Z w (1 .
Vo = Ty (Ltitany) (5) QL 1, = cosw ¢ (5)Qu T,
= cos - eV, = % (1 + eiw) -V,
1
Vi = 5 (6) Q-1 (on-resonance amplitude due to beam)
2V ¢, P,
Ig = IfO'I‘: . f ’ |Ig‘:|1f0'r‘:]g:-lf0r:2 " g
(5) @ (5) @
1 . .
Lep = —m-(1+ztan¢)-((1+ztan¢)1g + I)
) tanq/z )
Leww = 1 T tan 1/] (1 + ¢tan 1/)) : (2]:9 + Ib)
and corresponding to equation (3.42)

Lo = Ifor + (Iref +Ib) .

The generator- and beam-induced voltages vary as a function of the tuning angle v along a
circle in the complex plane (Figure 3.8). The quantities Vg, and V), represent the voltages
generated by the generator current and by the beam current, respectively, if the cavity is
tuned on resonance (¢ = 0). In the case of superconducting cavities with Qg > Qez, the
voltage V. is twice that of the incident wave Vy,, of steady-state. The beam current
I, is represented as a complex quantity. In accelerator physics, the beam phase ¢ is
defined as the angle between the beam current with respect to the cavity voltage V .q,.
The different voltages and angles are displayed in Figure 3.9. In this diagram, the phase
of the beam current has been chosen in such a way that the vector I is directed along
the negative real axis. Operating off resonance introduces the tuning angle v between
generator current and generator voltage and between beam current and beam voltage.
The generator and beam voltages add up to the cavity voltage V.,. The accelerating
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Figure 3.8: Induced cavity voltage as a function of the tuning angle ). The voltage
induced by a generator current I, on resonance is denoted by an index
't’. This applies to both generator- and beam-induced voltages. In the
case of superconducting cavities with Qg > Qeqt, the voltage Vg, is twice
that of the incident wave V.

voltage for the beam is then given by the projection on the direction opposite to I.
V;zcc = ‘Vcav‘ - COS ¢b .

Now, the reflected voltage can be inserted since the cavity voltage is a superposition of
forward and reflected voltage. The angle © defines the angle of the incident wave (forward
wave) with respect to the negative beam current and can be varied by the control system.

Figure 3.9:  Vector diagram of generator- and beam-induced voltages in a detuned
cavity. The angle ¢, denotes the beam phase and ¢ the tuning angle.
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In the case of superconducting cavities with strong external coupling (Qo > Qext),
the reflected power (equation (3.44)) can be approximated by

1 - —10 1 T
P’ef:1+tan2¢“(1+2tanw)\/§q‘e * §V<§)QL L

The beam current I, is chosen along the negative real axis. The incident wave (forward
current) has an angle of -© with respect to the real axis as seen in Figure 3.9. For a given
beam current Iy, beam phase ¢, tuning angle 1) and cavity voltage |Veey| = Vegw, the
generator power is calculated to (see appendix A.5).

chw 6+1 2RIy
= Vi 4L ()
RL 8/3 ‘/ca'u

2

2 2RI 2
cos¢b] + [tanw—i- VL % sin qbb] > (3.45)

In the case of superconducting cavities with 3 > 1, this formula can be simplified to

2

vz o1 (6) QrIvo Af (6) Qrlvo
P=-—3%—— | |14+ ~——cos¢p| + + sin ¢y, (3.46)
I (6) QL 4 [ ‘/;av f1/2 ‘/;av
The quantity fi, = ZQLL is the bandwidth of the cavity. As far as TESLA/TTF is

concerned, two special cases exist.
Veaw = 25 MV, Q1 = 3- 10 no beam:

2
P, = 50 - (1+ <ﬁ> )
f1/2

Veaw = 25 MV, Qr = 3-10% I, = 8 mA; ¢, = 0° (on-crest):

2
P, = 50kWV - (4+ <ﬁ> )
fi/2

Detuning of the cavity by one bandwidth (for example due to Lorentz force) increases the
required power by 25%. In storage rings, it is necessary to operate the cavities off-crest by
an angle of ¢, to guarantee stability with respect to synchrotron oscillations. In a linear
accelerator, it can also be necessary to inject beam with a phase of ¢, to minimize the
energy spread due to wakefields. In both cases, the required power can be minimized by
means of detuning the cavity. Moreover, the coupling of the RF generator to the cavity
has to be optimized so as to ensure minimum RF generator power.

Firstly, the optimum tuning has to be found. The second bracket in equation (3.45)
depends on the tuning angle ¢. If the tuning is chosen such that the second bracket
vanishes, the required power is minimized.

2 Ry Iy sin ¢, = 2 Ry
chav b ﬂ + 1 ‘/CG’U

tan '(/Jopt = — sin ¢b . (347)
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Then the generator power at optimum tuning becomes

V2 B+1 - 2 R Iy
RL 86 ‘/;av

(Py)opt = COS ¢y

Differentiating this expression with respect to the coupling parameter 3, the condition for
optimum coupling is obtained by

Rl

2
ﬂopt =1+ COS ¢b

cav

The minimum generator power to maintain a cavity voltage V4, is

Veaw
(P_q)mm = ﬂopt ' 2R .
The optimum tuning angle of the cavity can therefore be expressed by
ﬁopt -1
tan = — tan ¢y .
wopt /Bopt +1 ¢b

In the case of superconducting cavities, we get the simplifications

Awopt (%) Qrlw

tan ’(/Jopt = 2C)L w = - v sin ¢b
Aopt = — <6) o sin ¢
w 2%(1.1} ’
Veaw
Qr)opt = 77—
g (6) Iy cos oy
tan wopt = —tan ¢b <~ djopt = _¢b
V2
(Pg)mm = . = ‘/;av : IbO - COS ¢b
<6) (QL)opt

The optimum coupling, i.e. the optimum loaded @)1, has to be adjusted in such a way that
the beam-induced voltage equals the cavity voltage. The minimum required power is no
more than the power transferred to the beam since the dissipated power can be neglected.
For TESLA/TTF the optimum parameters are provided in table 3.1. The cavity voltage
is calculated with V.4, = Fuee - | and [ = 1.038 m.

3.3.3 Transient Behavior of a Pulsed RF Cavity with Beam
Loading

In the previous section, all formulas for the steady-state have been derived, assuming
that both the RF generator and the beam current have been turned on for a long time
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TTF TTF TESLA 500 | TESLA 500
beam current [mA| 8.0 8.0 8.2 8.2
Foaee [MV/m] 15 25 25 40
(QL)opt 1.857 - 105 | 3.125-10° | 3.024-10° | 4.838- 105
(6r=0°) | (=0°) | (dp=—3°) | (6 =—3°)
bandwidth f,/, [Hz] 350 208 215 134
Afopr = 2222t [Hy] 0 0 +11 +7
(Py)min per cavity kW] 124 206 211 337

Table 3.1:  Optimum loaded quality factor @, for TTF/TESLA 500 machine pa-
rameters. The optimum detuning of the cavity refers to continuous-wave
operation. Lorentz force detuning requires a different, gradient-dependent
pre-detuning in order to minimize the peak power during the RF pulse.

The beam phases have been calculated in [Mos 95].

compared to the characteristic filling time of a cavity. Now, the transient behavior of a
cavity will be derived when the RF generator is turned on or off, and the beam is injected
after some delay. The starting point is the differential equation for a driven LCR circuit
(see equation (3.16)).

V() + 2% + w2V = “f;

I(t
0, Q, '
A cavity is a weakly damped system (% < wp). The resonance frequency of this system
is in very good approximation wyes = wy.

/ 1
Wres = Wo l—ﬁzwo

In the case of TESLA, the loaded @y, is in the order of 3 - 10%. The resonance frequency
fo = 1.3 GHz of the unloaded cavity changes only by 0.024 Hz. The driving current I,
of the RF generator and the Fourier component I, of the pulsed beam are harmonic with
a time dependence e™!. Therefore, we separate the fast RF oscillation from the slowly
changing amplitudes and phases or from the real and imaginary parts of the field vector.

(3.48)

V(?)
I(t) =

(Vi(t) + iVi(1)) - €
(I(t) + il;(t)) - ™
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When we insert this into the differential equation (3.48) and neglect the second-order time
derivatives of V, we obtain the first-order cavity differential equation for the envelope (see
appendix A.6).

V, + wipp Ve + AwV; = Rpwipp I,
Vi + wippVi — AwV, = Rpwipl;

In this, wi/y = %0; is the bandwidth and Aw = wy — w the detuning of the cavity. In
state space formalism, the differential equation is written as

d V., _ —W1/2 —Aw V. RLW1/2 0 I,
&(‘/;)_( Aw  —wiyp ) \ Vi * 0 Rywipp ) \ L ) - (3.49)

With the matrix definition

the differential equation becomes
z(t)=A-z(t) + B-u(t) .

With ¢y = 0 the general solution is
¢
z(t) = et 2(0) + / AN B Lt dtf
0

A.

where e is the matrix exponential defined by

1 1
At=1+ At + 5A2t2 + §A3t3 + -

S

(O)) ) is the initial state at ¢y = 0. For matrix A, we get

and 2(0) = ( 0

At _ —wt [ C0S(Awt) —sin(Awt)
© =F sin(Awt)  cos(Awt)
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In the special case of constant input power being provided, i.e. constant current v = < é )
(for t > 0), the general solution can be calculated explicitely and is
( V. ) _ R -1 -wyys ) (e—wl/zt( —wl/chsAwt + Awsin Awt > " < w12 )) ‘
Vi wijy + Aw? —wijesin Awt — Aw cos Awt Aw
For t — o0, the solution merges into the steady-state
(V}) :RL'I'wl/Q(w1/2>
Vi ) ie W%/z +Aw? \ Aw
which can be expressed as a complex quantity
1

V = —— (1+1it -1
1+tan21/1( Hitany) By
A A
tany = _w:2QL_w
w12 Wo
Ry -1
VI = Vi +iVi| = =

A comparison with the steady-state equations (see page 35, V) shows that the driving
current for a cavity is
I= |21, + I)|.

In the case of on-crest acceleration (¢, = 0, i.e. I is opposite to V4,) and on-resonance
operation (tant = 0), the absolute value of the current can be simplified to I = (21, —
I) = 2 (I,—I). With the TESLA design parameter of V4, = 25 MV, loaded @, = 3-10°
and a DC beam current of Iy = 8 mA, we get I = 16 mA and I, = 16 mA. Filling a
TESLA cavity with RF power of 200 kW (= I = 16 mA) leads to the plot in Figure
3.10. It shows the transient behavior of the cavity displayed in a polar plot by real and
imaginary parts of the accelerating field. The different curves represent various values of
detuning Aw. The crosses indicate the cavity field at the injection time ¢;,; (defined later
on). If no beam is injected, the cavity field increases to the steady-state voltage indicated
by the dotted circle. It should be pointed out that the cavity field rises always in the
same direction during the first microseconds irrespective of detuning. It is the direction of
the driving RF current which has to be chosen along the real axis. This effect is used to
determine the phase offset of a cavity due to an arbitrary cable length of the field probe
antenna (see chapter 4.4).

Finally, the case of the operation of a resonator on resonance (Aw = 0) will be consid-
ered in more detail. Moreover, beam is accelerated on-crest. The complex voltages and
currents are written as amplitudes because of the simplified phase relation (¢, = © = 0°).
Filling a cavity with constant forward power results in an exponential increase of the
cavity field.

V,=Rp-2I, (1 - e77) (3.50)
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Vi [MV]

Figure 3.10:  Transient behavior of a TESLA cavity with constant input power (Pj,, =
200 kW; Qr = 3 - 10°) for selected detuning. The dotted circle indicates
the steady-state voltage as a function of the tuning angle ). The crosses
mark the cavity field at injection time t;,; = 510 ps.

The same is valid for a beam current of Iy injected at a time #;,;.
Vo= —Ryp - 21y (1 - e_%(t_ti"j))
The time constant 7 of the cavity is

Wi/2 Wo

12,

Due to the linearity of the differential equation, the total cavity voltage is a superposition
of RF generator voltage (induced by I, for ¢ > 0) and beam voltage (induced by the beam
current Iy for ¢ > ti;).

V() = Vg + Vo =Ry 21, (1—€77) — Rp-2Lyp (1—e 7)) for &> tin

In superconducting cavities, where the generator power is nearly completely transferred
to the beam, the injection time can be chosen in such a way as to ensure immediate
steady-state condition. This is achieved if the injection takes place when the cavity field
has reached half of its maximum.

tinj =In2.-7
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The cavity field is then
‘/cav(t) =Ry - Ig =Rp - 21y for ¢t > tinj .

Turning off the RF power at the end of the beam macro pulse yields an exponential decay
of the cavity field.

Vea(t) = R, - I - e (t=tos )/ for ¢ > t,sf (3.51)

This behavior is shown in Figure 3.11. Energy conservation yields

45

g
-

generator induced
" gradient

N
o
T

(oY)
[
T

w
o
T

N
Ul
T

gradient [MV/m]

=
1
T

=
(=]
T

beam induced gradient

4]
T

0 560 ] 1OIOO 15IOO 2000
time [us]

Figure 3.11:  Accelerating gradient of a TESLA cavity with constant input power
(Pror = 200 kW; Qr, = 3 -10°) being supplied for 1310 ps and beam
between 510 us and 1310 ps. The field induced by the beam cancels the
exponential increase of the generator-induced gradient, resulting in a so-
called flattop operation. Turning off both RF generator and beam current
at t = 1310 us results in an exponential decay of the cavity field.

dW
Pg:Pdiss + Pref + Pbeam + W

In contrast to the other terms, the dissipated power can be neglected in the case of
superconducting cavities. The beam power is simply Pream = Veaw - Iro, While dW/dt

describes the change of the stored energy in the cavity (W = (T/‘g“)’_’w()). During the filling
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of a cavity with constant input power, the cavity voltage is a superposition of forward
and reflected voltage. With the solution from equation (3.50), the reflected voltage is

V;"ef(t) = ‘/;av(t) - Vfor
= Ry-2L, (1 —e7) - Ry,

and the reflected power

V2 .(t
Pres(t) = res (1) for 0 <1t <t -
Ry,
Injecting a beam at ¢ = t;,;, when the reflected power approaches zero, brings the whole
system in steady-state condition with no reflected power. The turning off of both the RF
power and the beam results in
aw 2‘/6(“) d‘/ctw (

Frer = =g T (5) w At

5) Qp I

or expressed in terms of amplitude (with equation (3.51))
Vief(t) = Vigo(t) = Ry I, - e (los /7 for ¢ > tof -

The vector diagram of the voltages and the corresponding reflected power is shown in
Figure 3.12. The phase of the reflected wave after turning off the RF is phase shifted by
180° compared with that during filling of the cavity.

3.4 Mechanical Model for Lorentz Force Detuning

A standing electromagnetic wave in a metallic resonator exerts pressure on the surround-
ing resonator walls. This radiation pressure is [Beck]

1

P=
4

(MO|H|2 - 60|E|2) :

The quantities H and E denote the magnetic and electric field on the walls. The ra-
diation pressure results in a deformation of the cavity and consequently in a change in
the resonator volume by AV. The resonance frequency is shifted by a change in volume
according to [Sla]

/ (col Bol? — polHol?) dV

YA _ , (3.52)
wo /(60\E0\2 + pol Ho[?) av
14

where EO and ﬁo are the unperturbed fields. The highest pressure is to be found in regions
with high fields. The high electric field near the iris contracts the cell (negative volume
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Figure 3.12:  Vector diagram of voltages and reflected power (Pf,, = 200 kW; Qr =
3-109).
Left side: The beam is injected at time ¢;,; = 510 pus. RF generator and
beam current are turned off at t = 1300 us.
Right Side: No beam injection and no power reduction. The cavity field
rises to 50 MV/m. At the injection time t;,,;, the reflected power has a
phase jump of 180°.
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change), while the high magnetic field around the equator results in a pressure which is
directed outwards (positive volume change). Both effects yield a decreasing resonance
frequency as seen in equation (3.52). To reduce this deformation, the TESLA cavities are
stiffened. Figure 3.13 shows the deformation of a cavity cell at a gradient of 25 MV /m
with and without stiffening rings. The deformation near the iris is negligible due to the
stiffening ring, but it remains nearly the same as in the unstiffened cell near the equator.
Assuming a linear dependence of the volume change on the radiation pressure, detuning
in steady-state operation is proportional to the square of the cavity field.

Afo = (fo)2 — (fo)1 = —K - E2,, (3.53)

K is defined as the Lorentz force detuning constant, while E,.. is the accelerating field,
(fo)1 the initial resonance frequency at E,. = 0, and (fy)2 the final resonance RF fre-
quency at the steady-state field E,... The computed value of the Lorentz force detun-
ing constant of the stiffened TESLA cavities is 1 Hz/(MV/m)?. Since this detuning is
gradient-dependent and the cavity walls have a inertial mass, there is a transient behavior
of the resonance frequency from the initial to the final state. The calculated Lorentz force
detuning for a TESLA 9-cell cavity at 25 MV /m with an RF pulse length of 1300 ps is -378
Hz due to the H-field only and -16 Hz due to the E-field only. Detailed measurements in
the test stand of the TESLA Test facility have shown that the calculated and measured
detunings are in agreement. To describe the dynamic effect of the detuning during an RF
pulse, an approach based on a first-order differential equation is discussed.

—

Frequency shift due to
Lorentz forces: -394 Hz

Frequency shift dueto
Lorentz forces: -875 Hz |

b)

Figure 3.13:  Cavity Cell Deformation of a TESLA cavity due to Lorentz force at a
gradient of 25 MV /m. The wall thickness of niobium is 2.5 mm.
a) Cavity cell with stiffening ring
b) Cavity cell without stiffening ring

Dynamic measurements of Lorentz force acting on a superconducting MACSE cavitiy
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have shown that the mechanical dynamics can be described by a first-order differential
equation [Mos 93].

Tm - Aw(t) = —(Aw(t) — Awr) — 21K - EL ()
Aw(t) = wy(t) — w

The equation describes the time variation of the frequency difference Aw between the
resonance frequency wy and the RF frequency w of the master oscillator which remains
constant. Awr defines the frequency shift due to a mechanical frequency tuner. In these
measurements on a MACSE cavity, the mechanical time constant 7,, was determined
to be in the order of 0.5 ms. For TESLA cavities, the time constant is expected to
be in the order of 1 ms [Mos 94]. The description of Lorentz force detuning by a first-
order differential equation implies a quasi instantaneous response of the detuning on the
accelerating field. Unlike in second-order differential equations with inertia behavior, the
resonance frequency changes immediately by Aw(¢) when the cavity field increases after
turning on the RF power supply. Cavity filling to 25 MV /m in 500 us and constant field
during the 800 us acceleration cycle results in a change of frequency of about 400 Hz. This
is nearly twice the cavity bandwidth (Q, = 3 - 10°%, fi/, = 217 Hz) and demands extra
RF power (about 25 %) to maintain a constant gradient. Measurements on the dynamics
of Lorentz force detuning have been carried out and will be presented in chapter 6.2.
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Chapter 4

The Digital RF Control System for
the TESLA Test Facility

In chapter 2, it has been shown that the cavity resonance frequency changes during an
RF pulse due to Lorentz force detuning and from pulse to pulse due to microphonics.
Amplitude and phase of the incident wave have to be controlled in order to maintain a
constant accelerating field. The connection of amplitude and phase is described in Figure
4.1. Assuming that the resonator is initially excited on resonance (1), the change of the
resonance frequency results in a lower amplitude (2) which is compensated by an increase
of the input power (3). The simultaneous phase shift (2) is corrected by applying a phase
shift to the driving signal in the opposite direction (3). In this chapter, the principle
of sampling an RF signal is illustrated first. Then, the generation of the local oscillator
frequency and timing signals is described and a detailed description of the individual
components is given. This includes the Digital Signal Processor algorithm. Subsequently,
diagnostic tools are introduced before the operational experience made in controlling the
vector sum of eight cavities is discussed.

4.1 Principle and Components of the Digital Control
System

The digital feedback used for TTF is based on the control of the real and imaginary
components of the cavity field instead of on the traditional amplitude and phase control.
Since it is impracticable to sample an RF field directly at frequencies above 100 MHz, it
has to be converted to a lower frequency signal. For the TTEF RF control system a sampling
rate of 1 MHz has been chosen to guarantee a fast feedback system at reasonable costs.
The intermediate frequency is 250 kHz. This choice is based on the principle of measuring
real and imaginary parts of the down-converted cavity probe signal. The principle will be
explained in the following. The down-conversion of a signal is shown in Figure 4.2. The
frequency of the constant local oscillator (LO) signal (constant in amplitude and phase
with respect to a master oscillator) is offset by 250 kHz from the operating frequency of
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Figure 4.1:  Principle of RF control. The change of the resonance frequency (left plot,
curve (1) to curve (2)) results in a decreasing amplitude at the operating
frequency wgp. This is compensated by adjusting the input power (curve
(3)). The resonance frequency variation yields also in a phase shift (right
plot) corrected by applying a phase shift in the opposite direction.

the cavities in the TESLA Test Facility. The down-converted intermediate frequency (IF)
signal of 250 kHz contains the information of amplitude and phase of the RF field.

An ideal RF mixer acts like a multiplicator of two input signals. Assuming two sinu-
soidal signals

VRF(t) = VRF . sin(wRFt -+ (PRF) ; VLo(t) = VLO . sin(wLot + QOLO)

the intermediate output signal is
1.~ N
Vir(t) = §VRFVLO(COS ((wLo — wrr)t + (Yo — (PRF))

— oS ((wLo + wrr)t + (Yro + SDRF)))

A low pass filter removes the high frequency component of Vip(¢). It remains a signal
V (t) with a frequency which is the frequency difference of the input signals.

Vir(t) ~ V(t) =V cos (wipt + Ay) ;
~ 1~ N
with V = §VRFVLO )
WiF = WLo — WRF ;
Ap = pro — Yrr
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mixer
RF signal local oscillator (LO)
fre= 1300 MHz f o= 1300.25 MHz

down converted signal
(intermediate frequency)

fe= 250 kHz

Figure 4.2:  Principle of down-conversion of an RF signal to an intermediate frequency.
The frequency of the constant local oscillator (LO) signal (constant in
amplitude and phase with respect to a master oscillator) is offset by 250
kHz from the operating frequency of the cavities in the TESLA Test
Facility. The down-converted intermediate frequency (IF) signal of 250
kHz contains the amplitude and phase information of the RF field.

If the amplitude and phase of the local oscillator signal are constant with respect to a
master oscillator, the down-converted signal contains the information of amplitude and
phase of the input RF signal. Sampling the 250 kHz intermediate frequency with a
sampling rate of 1 MHz yields four samples per period (Figure 4.3). If the IF signal is

ViE(t) = Vig cos(wjet + Ad)

| — t[pg

Figure 4.3:  Sampling of the intermediate frequency with a sampling rate four times
higher yields four samples in one cycle. Two consecutive samples repre-
sent a real and imaginary part of a corresponding complex field vector.
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constant in amplitude and phase, samples are 90° appart (with 1 ps time difference).
Therefore, the previous sample can be referred to the time of the present one.

Vty) = Vcos(wIFto + Ap) = VCOS(CL)[Ft]_ - g + Ap) = VSin(WIFt]_ + Agp)

V(tl) = VCOS(U)[Ftl + AQD)
The two samples V (¢1) and V (ty) are taken as the real and imaginary parts of the complex
field vector': “) “)

V(1 V(ty
V t ,t - =
=55 )= (v )

Since two adjacent samples in a 250 kHz cycle are phase shifted by 90°, the complex field
vector receives a 90° rotation every microsecond (Figure 4.4). The different time steps

Im

V,=V (tl , 1o )
(-90°- dyy)

Vo = V (tO ’ tl)
(' q)off)

Re

V,=V(t,, t;)
-180°- @,
( ff) V=V (ts, )
(-270°- @)

Figure 4.4:  Two consecutive samples of the down-converted signal can be represented
as a complex field vector V (¢;,;11). From one time step to the next, this
vector is rotated by 90°. In order to compare the measured field vectors
they have to be rotated by (—®,ss), (—90 — @pry), (—180 — ®yff), and
(=270 — ®,ss), respectively. The phase offset ®,;; compensates for the
different cable length.

have an index k which indicates the sampling times ¢, = k - Ts where 7T is the sampling
period. To detect amplitude and/or phase changes, one has to refer these consecutive
vectors to a reference vector which is chosen to be the vector at ¢ = t;. Therefore, the
measured complex field vector has to be rotated at every time step by 90°, 180° or 270°
respectively.

Figure 4.5 shows the schematic of the digital RF system for the TESLA Test Facility.
First, an overview of the different components will be given.

!The real and imaginary parts sometimes called in-phase (I) and quadrature (Q) component
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The incident RF wave coming from a master oscillator is controlled by a vector modu-
lator. Amplitude and phase are set by real (Re) and imaginary (Im) part control signals.
A circulator in the transmission line (waveguide) protects the klystron from power reflec-
tion which occurs during cavity filling and after turning off the RF or due to mismatched
coupling. RF hybrids distribute the RF power evenly to individual cavities. Directional
couplers and a three stub waveguide tuner are inserted in every waveguide path to measure
forward and reflected power and to adjust the phase or the loaded ()r,, respectively. Each
9-cell cavity is equipped with a high power input coupler and a field probe antenna at the
opposite side of the cavity. Eight cavities are assembled in one cryomodule. Mechanical
frequency tuners are mounted at every cavity to adjust the cavity resonance frequency
to an optimum predetuning. All field probe signals are split up in three ways. The first
signal is used for feedback. It is down-converted to the 250 kHz intermediate frequency
and sampled with a high-resolution fast ADC which transmits the data to a digital signal
processor (DSP). The second is the input signal of a so-called transient detection board
which detects the beam-induced transients on the amplitude of the cavity fields . This
signal is used to perform a beam-based vector sum calibration (see section 4.4). The third
field probe signal is also down-converted to 250 kHz, but sampled by an ADC (12-bit) of
lower resolution than used for feedback. This ADC belongs to a set of monitoring ADCs
which sample also the forward and reflected waves of each cavity. One digital signal pro-
cessor receives the digitized field vector sum. The control system for 16 cavities requires
four DSPs. All of them transmit their data to a final DSP which determines the com-
plete vector sum and applies to it the control algorithm. The new settings for the vector
modulator are converted to analog signals by two DACs. All the DSPs and monitoring
ADC boards are located in an Euro-crate with VME-bus interface. Data and parameter
settings are accessible via an embedded micro-computer (SUN) which is part of the main
control system of the linac. A detailed description of the system will be given in the next
section.

4.2 Local Oscillator and Timing

Sampling the down-converted 250 kHz four times per cycle requires a 1 MHz clock which
is synchronized to the RF and to the local oscillator (LO) frequency. All frequencies are
derived and phase locked to a master frequency. For the TESLA Test Facility, the reference
has been chosen as f,.r = 9.027775 MHz. There are several derived frequencies as shown
in Figure 4.6. The RF operating frequency 1299.9996 MHz which is usually designated
as 1.3 GHz is generated from f,.; by multiplication with 144. A clock frequency f, is
derived from the reference by f. = %f ref = 10.030861 MHz. This frequency is distributed
along the linac. A timing module in the low level RF system generates the sampling
frequency by a countdown clock f, = 11—0 fe- In principle, the RF diagnostic frequency
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(local oscillator), which is approximately 250 kHz? above the RF operating frequency,
can also be synthesized by fro = (144+ %) frey. Usually this is achieved by phase-locking
a second oscillator to the master oscillator on the 10 MHz level. Down-conversion of
the RF operating frequency with this LO-frequency leads to the 250 kHz intermediate
frequency as mentioned in section 4.1. In the TESLA Test Facility, a different method for
LO generation has been chosen. For the detection of real and imaginary components, it is
important to have a 90° shift between two consecutive samples. This can also be achieved
by shifting the local oscillator phase by 90° every microsecond. The down-converted
signal is then a 250 kHz step function (see Figure 4.7). The phase shift is performed by
a table-driven DAC board, called I/Q-driver. It consists of a universal programmable
two-channel function generator. The input frequency is the operating frequency frr of
the master oscillator. The real and imaginary control signals are generated by two 16 bit
DAC:s receiving the digital input from two 32k RAM blocks. They contain data tables for
real and imaginary components which can be adjusted by the operator. The DACs are
clocked by a 1 MHz frequency signal derived from the clock frequency f.. The periodic
step function is delayed with respect to the sampling time to assure that the sampling
occurs on the plateau of the step and not at the time when the 90° shift is performed.
The reasons underlying the decision to generate the local oscillator signal in this way are
as follows: Firstly, this method is insensitive to time jitter of the clock signal. Secondly,
the measured phase between two consecutive samples is always well defined after turning
on the master oscillator, while in the case of a second oscillator being locked to the
reference frequency one has to ensure the correct phase relation between them in order to
prevent 90° phase jumps after powering up. Finally, it provides an enormous flexibility
of the digital system. Changes of the sampling frequency and thus the LO frequency are
achieved by software by means of setting new tables. It is also possible to reduce the
harmonic components of the 250 kHz step signal by introducing smaller phase shifts at a
higher rate (up to 10 MHz) to get a better approximation of a sinusoidal signal.

4.3 Digital Signal Processing

4.3.1 Hardware
DSP System

The sampling rate of 1 MHz demands a high processing speed and a large input/output
(I/O) capability in order to handle the high data rate. The DSP C40 (floating-point
parallel digital signal processor TMS320C40 made by Texas Instruments) with 32-bit
address and data busses represents the best choice at the present time. It provides six
processor-to-processor communication interfaces, the so-called communication ports. The

2The exact frequency of the RF diagnostic frequency is a quarter of the sampling frequency f, and is
calculated to 250.7715 kHz
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DSP is mounted on a module following the TIM-40? standard. The carrier board DBV44
from Loughborough Sound Images is a VME slave board with a modular architecture.
Each DBV44 board can accomodate up to four modules. Three communication ports
of each site are routed to front panel connectors and the rest are on-board links. The
module type which is used for the TESLA Test Facility is the single module MDC40S2-40
with 40 MHz clock rate. The data transfer of the 32-bit words between the three DSPs
is performed through the on-board communication port links on a byte-to-byte basis at a
maximum rate of 20 Mbps. Data transmission is asynchronous due to FIFO (first-in-first-
out) I/O buffers. The schematic of the DSP board connected to ADC and DAC boards
is shown in Figure 4.8.

3Texas Instruments’ TMS320C4x Module Specification
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fre = 1299.9996 MHz

fg=9.027775 MHz [ | * 144

—~

10 | fe=10.030861MHz _
9 (distributed along the linac)
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Figure 4.6: TTF RF scheme for RF frequency generation and timing signals

fre= 1.3 GHz (RF Signal)
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Figure 4.7:  Local oscillator frequency generation with I/Q-driver.
Figure above: A two channel functional generator drives a vector modu-
lator which switches the LO phase in 90° increments.
Figure below: The down-converted signal of an RF mixer is a 250 kHz
step signal which is sampled with a frequency of 1 MHz. The sampling
time is indicated by arrows.
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ADC and DAC Boards

The ADC and DAC boards are in-house developed boards designed as 6U (six units)
Eurocards. Both of them have interfaces to the standard communication ports of Texas
Instruments DSPs with handshake protocols.

The ADC board consists of four independent ADC channels with 14-bit A/D con-
verters (Datel ADS 929, maximum sampling rate 2 MHz) operated at 1 MHz sampling
frequency. Input amplifiers with a gain of 30 and a bandwidth of 9 MHz amplify the
signal to the maximum sampling range of +5 V to get highest resolution. Two ADCs
transmit their data to a programmable logic device (PLD). The PLD is connected with
the DSP through the communication port interface. The data of two ADC channels is
pipelined to one communication port of the DSP. Therefore, a total of six ADC channels
can be connected to one DSP (3 front panel connectors). To save conversion time from
integer (ADC) to floating point (DSP) format, this conversion is already performed in the
PLD. The total delay time between ADC input and DSP input is approximately 900 ns.

The DAC board is a two-channel board with 16-bit D/A converters (AD768). Similar
to the ADC board, it has a programmable logic device which is connected to the DSP
through the standard communication port. The floating point data from the DSP is
converted to integer format for the DAC. Because of the external conversion, valuable
computing time is saved once more in the DSP. Additionally, the PLD logic checks the
incoming data and limits it to the valid input range for the DAC. The delay time through
the DAC board is about 500 ns.

The choice of 14-bit A/D and 16-bit D/A converters was made on the basis of require-
ments, safety margins and cost considerations. For example, correlated amplitude errors
have to be suppressed to a value better than 3-10~* and correlated phase errors to better
than 0.1° (chapter 2.2.1) demanding an approximately 10 times better resolution in the
measurement (— 14-bit necessary).

RF Mixer

RF signals can be converted to low frequency signals with RF mixers and Schottky diodes.
With the latter, only the amplitude of the RF signal can be measured. To determine both
amplitude and phase RF mixers are used. In the TTF, high precision is required for the
detection of real and imaginary components. Down-conversion to a 250 kHz sinusoidal
signal or to a step function results in harmonic components of the 250 kHz base frequency.
Tests with two different mixers have been performed to improve the linearity of the down-
converted signal. For 1072 linearity we need -60 dBc for harmonics. The comparison of
the low-level mixer ZFM 2000 (Mini Circuits; with +7 dBm at the LO input) and the
high-level mixer RAY11 (Mini Circuits; with +23 dBm at the LO input) is shown in
Figure 4.9. For example, at 0 dBm RF input power the first harmonic at 500 kHz is only
suppressed by -19 dB with the ZFM 2000 while the suppression is about -58 dB with the
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Figure 4.9:  Low-level RF mixer ZFM 2000 and high-level mixer RAY11. The RF

output power is plotted versus the RF input power for the 250 kHz base
frequency and some of its harmonics.
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high-level mixer RAY11. Based on these measurements, the high-level mixer RAY11 has
been chosen despite the fact that large LO power is needed to supply all the mixers for
the cavity field probe, incident wave and reflected wave signals.

4.3.2 Digital Signal Processor Code

The TTF control algorithm for 8 cavities has been implemented on the TMS320C40
parallel processor system and is distributed over 3 DSPs. The C40 internal communication
ports are used to send signals between this group of processors. DSPs 1 and 2 read cavity
data from the ADC with a sampling period of 1 us, perform the multiplication of the
individual complex vectors (Re/Im) with the rotation matrices, and calculate the vector
sum for 4 cavities. The complex field vector of cavity j consists of the present and the
previous sampled signal as shown in section 4.1.

Vi (th) Vi(te)
V‘ t == *J = J
i(%) < Vi (k) ) ( Vj(te—1)
Beside the 90° phase shifts, every measured vector is rotated and scaled to compensate
phase differences (offset (®,y); for cavity j) due to different cable lengths and to calibrate

the accelerating fields in the different cavities (scaling factor g; for cavity j). Consequently,
the input vector for four consecutive time steps has to be multiplied by different matrices.

;. —b;
by D M) = (Z”. )

0 1
terr (=90°) 1 My(tga) = 1 0

tes (=270°) 0 My(tees) =

(o)
teyz (—180°) 1 M, (tgs2) = ( (1) (1)>
(5 70)

where the quantities a; and b; denote

a; = g; - cos(Qoss)j ; bj = g; - sin(@oyy);

The partial vector sum at every time step is calculated to

Vi) = () = S M- vitw)



All calculations must be carried out within the sampling period of one microsecond. The
elaborate computation of the partial vector sum requires 16 multiplications and 14 addi-
tions. This is possible since a 40 MHz DSP executes 20-40 instructions per microsecond
in parallel processing. For example, multiplication and summation can be performed si-
multaneously in a single 50 ns cycle. Furthermore, partial calculations performed at a
time step t; can be used in the following time step ¢x,;. The rotation of the incoming
four cavity samples and their vector sum is written as:
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The second part of each vector is already calculated one microsecond beforehand and then
stored in the memory. Handling the data in this way allows the rotation and calculation
of the vector sum of four cavity vectors in 18 cycles with 20 cycles being the maximum of
a 40 MHz DSP. Moreover, careful memory allocation for data and parameters is necessary
to prevent internal bus conflicts.

A more extensive set of computations is carried out in the DSP 3, which receives partial
vector sums from two DSPs, calculates the vector sum of all 8 cavities and executes the
feedback algorithm. The present feedback algorithm applies proportional gain to the error
signal and uses a digital low-pass filter to reduce the sensor noise. The low pass filter is
expressed by

V(tes1) = (1 - %) V(ty) + %'V(tk)
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Vo (tet1) ( 1 ) Vo (tr) 1 Vz (te)
- = (1—-—=)-| + + = . 4.1
( Vy (t:) N\ T ) TN v b
The variable N is defined as the filter parameter. Setting N = 1 is equivalent to the
absence of filtering. Increasing /N means a reduced contribution of the present measured

value to the next mean value. The proportional gain feedback is applied to the calculated
mean vector at time ¢ = .

( ‘/;trl,z (tk) ) _ ( Kac 0 ) . ( ‘/;et,z (tk) _Km (tlc) ) + ( VFF,ac (tk) )
‘/ctrl,y(tk) N 0 Ky Vset,y (tk) - Vy (tk) VFF,y(tk)
Individual gains (K, K,) and setpoints (Vset,z, Vier,y) for the real and imaginary compo-
nent control signal are set every microsecond. Additionally, feed forward (Vpr,o, Vir,y)
is added at every time step. Feed forward is a control signal which is independent of the
measured error signal. In this way, repetitive errors in the RF system like Lorentz force
detuning of the cavities or deviation from the flattop of the high-voltage modulator pulse
can be compensated in advance by proper actuator settings. Hence, this method reduces
periodic perturbations within a pulse. The feedback controller has to suppress only the
remaining stochastic fluctuations like microphonics or slowly varying beam parameters.
The adaptive feed forward control system is a stand-alone program running in parallel
to the RF control system. It identifies the step response of the RF system, measures
the error signal during an RF pulse continuously and calculates the required actuator
settings averaged over time. A detailed description of this system is given in [Lie 98|. For
maximum flexibility all parameters (gain, setpoint and feed forward) are updated from
tables. The table size is based on the TESLA/TTF RF pulse structure and adjusted to
2048 values which correspond to a new setting every microsecond. Finally, the control
signals are sent to the DACs. A diagram of the feedback algorithm is shown in Figure
4.10. The interrupt service routines are implemented in all DSPs to read data from the
communication ports, thus allowing modification of the rotation matrices between pulses,
correction of DC offsets for the feed forward table and variation of the pulse length. As
time is critical, all programs have been developed in C4x assembly language to increase
calculation speed. The internal DSP timer has been used in all DSPs to scale and rotate

matrices in case of failure of the TTF timing system. The computational delay including
ADC and DAC conversion is 4.2 us.

4.4 Diagnostic Tools

4.4.1 Detuning Measurement

The digitized field-probe signals of the cavities provide the basis for extensive diagnostics.
The real and imaginary components of the individual cavity fields can be accessed by
reading the data directly from the DSP memory or from the monitoring ADCs. In both
cases the information of the amplitude and phase can be reconstructed. The phase is
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Figure 4.10:  Schematic view of the feedback algorithm. Each table consists of individ-
ual parameter settings for real (Re) and imaginary (Im) components for
a time period of 2048 us.

referred to the fixed local oscillator frequency. The RF control system has to maintain
a constant phase during the 800 us beam acceleration period. Due to microphonics and
Lorentz force detuning, the resonance frequency of the cavity varies from pulse to pulse
and within each pulse but the master oscillator frequency is kept constant. However,
after turning off the RF power, the stored electromagnetic field in the cavity immediately
oscillates at the resonance frequency wy of the cavity. The corresponding frequency jump
results in a linear phase variation with time (see Figure 4.11) as long as the resonance
frequency remains constant. This effect is used to determine the resonance frequency of
all cavities by fitting the phase curves with a straight line. The resulting frequency is the
difference frequency with respect to the RF frequency of the reference generator..

4.4.2 Vector Sum Calibration

It has been shown in chapter 2.1.3 that microphonics in combination with gradient and
phase calibration errors leads to an energy spread even if the measured vector sum is
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Figure 4.11: Measurement of the detuning

kept constant by the RF control system. The influence of phase calibration errors is
stronger than that of gradient calibration errors. If the energy spread contribution must
not exceed 2 - 104 when controlling 16 cavities, accuracies of 10% for gradient and of
+1.5° for phase calibration are required. Beside that, closing the feedback loop for the
vector sum regulation demands a proper summation of the individual cavity vectors. A
rough adjustment of £4° of the individually measured cavity phases can be achieved by
pulsing the cavity with constant forward power and fitting the phase response. Later, a
more precise calibration is made using beam-induced transients.

On account of of different cable lengths and different attenuations, the measured cavity
field vectors have to be rotated and scaled before being added. Phases are determined by
pulsing the cavity with constant forward power. In that case, the control signal consists
only of the real part at the vector modulator. In chapter 3.3.3 it has been shown that
the transient behavior of a cavity results in a spiral curve of the field vector as a function
of detuning. The initial increase is along the real axis, independent of detuning. The
polar plots of the measured individual cavity fields show the field increase in an arbitrary
direction (see Figure 4.12a). By fitting the cavity field curve in the polar plane the phase
offset (®,fr); is determined and the corresponding rotation matrix is calculated. This
procedure leads to the correct loop phase of the vector sum. The incident RF wave
can have different phases (A®;,.); due to different wave guide lengths to the cavities 1.
This can only be measured with beam. Beam acceleration leads to a transient on the
acceleration voltage. In the ideal case, in which the phases of all incident waves to the
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Figure 4.12:  a) Measurement of the phase offset of the individual cavities by pulsing
with constant forward power.
b) The beam transient induces a voltage. In the ideal case (beam phase 0°,
on-crest operation) the beam-induced voltage is opposite the generator-
induced voltage. Different phases of the incident waves leads to different
phases (A®;,.); for cavity j.

cavities are equal, the beam can be accelerated on-crest (beam phase 0°). In this case,,
all beam transients are opposite to the generator (klystron)-induced acceleration voltage.
If the incident waves have different phases, a phase angle between the two voltages is
introduced (see Figure 4.12b). To determine this phase angle, a special board has been
developed to observe the beam-induced transients (see transient detection board in Figure
4.5). A correction of the incident wave can be achieved by using three stub wave guide
tuners with which the incident wave can be shifted by +30° [Hiin 98]. Besides the phase
information from the transient detection board, the drop of the accelerating voltage due
to the beam-induced transients is used for gradient calibration. The bunched nature of
the beam results in a sawtooth-like profile on the gradient. With the TTF photo-gun
injector (injector II) a single bunch with a total charge of 8 nC induces a transient of
1.36-1072 of 25 MV /m in cavities with Q1 = 3-10°. By measuring the beam current and
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the amplitude of the transients, the gradients in the cavities are calibrated in reference to
the beam-induced voltages thus providing the individual scaling factors g; in the rotation
matrices [Lie 98]. The transient detection board acts like an amplifier for the signal
structure imposed on the gradient in the flattop range. The principle is shown in Figure
4.13.

detector | G, G | to

> —{+) monitoring
(Schottky | jnput L j gain ADC
diode) | gan | SH stage |

—— e e 2

transient detection board

timing

Figure 4.13:  Principle of the transient detection board. The cavity field amplitude is
measured with a Schottky diode. A sample and hold stage guarantees the
subtraction of the offset of the gradient detector voltage just before the
beam pulse arrives. The difference signal is amplified with a gain of up
to 100 before sampling it with a monitoring ADC.

On this board a Schottky diode is used to measure the amplitude of the cavity fields.
Amplifying the transient calls for a subtraction of the gradient detector voltage just before
the beam pulse arrives. The timing system provides the required sample and hold signals
(S/H). The detected transients are amplified by a gain of up to 100 to the maximum range
of £5 V of the ADC to get highest resolution. The achieved accuracy in phase calibration
during the first run of the TESLA Test Facility was 0.5° & 0.1° [Lie 98].

4.5 Operational Experience

Cryomodule 1 with eight 9-cell cavities was operated in different modes. Due to a failure of
one mechanical frequency tuner only seven cavities were tuned to the operating frequency.
The resonance frequency of the eighth cavity was 110 kHz offset from the RF frequency
of 1.3 GHz. The scaling factor for this cavity has been set to zero in the digital signal
processor in order to obtain the vector sum from the remaining seven cavities. In the
following, the vector sum refers to these seven cavities.
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4.5.1 Open Loop Operation

First, operation of the module has started without feedback and without beam. Constant
power has been applied during the filling of the cavities (500 ps) and has then been
reduced to a quarter to result in nearly steady-state condition. The RF has been turned
off after 1300 us. The 800 us time span between filling and turning off the RF' power is
called flattop. The individual gradients and phases of the cavities are plotted versus time
in the upper part of Figure 4.14. The two lower plots show the amplitude (in MV) and
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Figure 4.14:  Open loop operation of cryomodule 1 with seven cavities tuned on reso-
nance. The upper two plots show the gradients and phases of the individ-
ual cavities versus time. The lower two plots display the corresponding
accelerating voltage and phase of the vector sum.

phase (in degree) of the vector sum. The cavities have been tuned in such a way so as
to be on resonance at the beginning of the RF pulse. Lorentz force detuning results in
a monotonous phase shift of nearly 30° during the flattop. With proper predetuning it
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can be reduced to approximately 20° [Mos 94]. For gradients of 25 MV /m, the optimum
predetuning of a design cavity (with design parameters K and 7,,) is about 230 Hz, which
means that the resonance frequency of the cavity is 230 Hz above the RF frequency fgrp.
Due to Lorentz forces, the resonance frequency is shifted towards lower frequencies, passes
the RF frequency in the middle of flattop and reaches a frequency approximately 200 Hz
below the operating frequency frr at the end of the RF pulse. The phase of the cavity
increases as long as fy is above frr and finally decreases (fo < frr) ending up with
the 20° phase variation in total. The precise calibration of the individual phases is with
respect to the beam. However, during this operation no beam was injected. Therefore,
the phases in Figure 4.14 are only relative to the master oscillator. The slopes on the
individual gradients come from the slightly different loaded @}, which varied from 1.62-10°
to 2.21-105. The pulse-to-pulse stability without any feedback was in the range of 5-10~%.
The repetitive errors were dominating providing large potential for adaptive feed forward.

4.5.2 Closed Loop Operation without Beam Acceleration

Before closing the feedback loop, the loop phase has to be adjusted to ensure negative
feedback. Amplitude and phase of the vector sum have been regulated as real and imag-
inary components with a feedback gain of approximately 30 for each one of them. No
feed forward has been applied. Parameters such as filling time and beam acceleration
time (flattop) have been kept constant. The total accelerating voltage over the module
has been set to 115 MV. The plots in Figure 4.15 display the gradients and phases of the
individual cavities as well as the magnitude and phase of the vector sum. The rms errors
during the 800 us flattop are

(va)m =0.2%;  (0p)rms = 0.25°
One can see that several cavities powered by one klystron and controlled by a single control
loop behave basically like a single cavity. If all individual cavities have the same loaded
quality factor @r’s, the decay of the field after turning off the RF follows an exponential
curve (XN exp(—t/7;) = N - exp(—t/7) with 7 = 7y = 75 ---). The Q-values in the first
cryomodule in the TESLA Test Facility were slightly different (see above). However, the
resulting decay differs only within 4- 1073 from an exponential curve with a mean loaded
Qr, of (1.80 4 0.04) - 10%. This has been verified several times during operation.

4.5.3 Closed Loop Operation with Beam Acceleration

During the commissioning phase of the TTF linac, radioactive activation due to beam
losses had to be minimized. The beam macro pulses were therefore shortened to 30 us.
The maximum beam current of TTF injector I is 8 mA. The acceleration of the beam has
been performed with different beam currents. Because of the dominating repetitive error
sources, an adaptive feed forward correction has been applied. In Figure 4.16, the vector
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Figure 4.15:  Closed loop operation of cryomodule 1 with seven cavities tuned on reso-
g

nance without beam acceleration. The upper two plots show the gradients
and phases of the individual cavities versus time. The lower two plots dis-
play the corresponding accelerating voltage and phase of the vector sum.
The feedback loop gain was set to 30.

sum amplitude of the acceleration voltage of the cryomodule is plotted versus time, in
Figure 4.17 the phase is shown. Beam acceleration with feedback only (feedback gain 70)
and with additional adaptive feed forward are compared. Time delay in the feedback loop
together with the high gain leads to oscillations in amplitude and phase. The measure-
ments were performed by controlling the vector sum of five cavities. The beam current
was 6 mA. The rms errors are calculated for the whole flattop range of 800 us. The
amplitude and phase stabilities achieved were:
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without feed forward, feedback gain = 70 : (UVV) = 5-107%;  (0p)rms = 0.1°

with feed forward, feedback gain = 70 : (071/) = 5-107%; (04)rms = 0.03°
The slope on the phase results from Lorentz force detuning during the RF pulse. It is
repetitive and was compensated by feed forward.

The comparison of the stability achieved with the requirements for TESLA 500 yields
that the measured total amplitude error is a factor of 10 below the tolerable uncorrelated
amplitude error (5-107%). The measured phase error outperforms the tolerable uncorre-
lated phase error (0.5°) by a factor of 16. It still has to be demonstrated that the attained
amplitude and phase stability can also be reached with full beam pulse length of 800 us.
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Figure 4.17:  Closed loop operation of cryomodule 1 with five cavities tuned on reso-
nance. The macro beam pulse length was 30 us. The upper plot shows the
accelerating phase versus time. In the lower plot the phase of the vector
sum is displayed. The feedback loop gain was set to 70. The two curves
represent the performance with and without feed forward compensation
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Chapter 5

Stability Investigations of Feedback
System

Modern control theory is applied to investigate the stability and performance of the whole
RF system. On the basis of this theory, the system is devided into different blocks as
shown in Figure 5.1. Each block is described by an appropriate representation which can
be state space or transfer matrix.

w(ty) ety)
i zero order vector
controller i time delay (»] hold modul ator

t)
; sample y(
Klystron P cavity and hold >

v

Figure 5.1:  Simplified block model for the RF feedback system. The sample and hold
block gives discrete time samples of the cavity voltage V' at time ¢;. The
input of the controller is the error signal e(ty) which is the difference
between the setpoint w(t;) and the cavity voltage y(tx) = V (tx).

In the state space representation [Lud 96], each subsystem is characterized by a set
of four matrices and a vector called state vector. The relation between system input and
output is given by two matrix equations. A series of subsystems can be combined in a
state vector composed of the individual state vectors. The corresponding matrices for
the total system are a combination of the subsystem matrices. Even the simplified block
model (Figure 5.1) yields a fairly complicated description in state space.

In contrast, the transfer matrix representation directly relates the input vector to the
output vector by a matrix in the complex frequency domain, namely the transfer matrix.
For this purpose, the differential equation which describes a system is transformed into
the complex frequency domain by means of Laplace transformation. The output vector of
a subsystem is just the input vector of the next subsystem. In our case, the input/output
vector consists of two components: the real and imaginary voltages. In chapter 3 it has
been shown that the output of the klystron is described by a current. For the purpose of
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stability analysis, the use of voltages is more appropriate. The current is transformed into
a corresponding voltage. All the transfer matrices of the subsystems are 2x2 matrices, as
is the transfer matrix of the whole system. Therefore, the representation more appropriate
is therefore the transfer matrix representation which will be used in the following section.
Since the RF control system is implemented as a digital system, the transition from
continuous to discrete representation has to be performed. In this, the model of the cavity
includes the m-accelerating mode and the next passband mode, the gw—mode. For discrete
representation, the transfer matrices (in the Laplace space) have to be transformed into
the z-space by z-transformation [Lu/We]. In control theory, stability analysis can be
effected by different means, using algebraic or geometric stability criterions.

Algebraic methods (Routh criterion, Hurwitz criterion) are based on calculating the
poles of a transfer matrix. The location of the poles provides information with regard
to stability. The disadvantages of these methods are: it can be difficult to calculate the
poles analytically; and, morover, these methods cannot be extended to systems with time
delays. Algebraic methods cannot be applied to discrete systems (digital systems) in
which time delays are present [Lu/We|, whereas, however, geometric stability criterions
can also be applied to systems with time delays. Therefore, we investigate the digital
RF control system with geometric methods using Bode and Nyquist criterions. Since
every input signal fed into a system can be decomposed into its Fourier components, it
is important to know how a system reacts on a harmonic input. This is why a Bode
diagram is used in which the frequency response on a harmonic input signal is shown.
The response signal is plotted as amplitude and phase versus the logarithmic excitation
frequency. In RF systems, it is only the frequency offset to the operating frequency fgrp
(wrr) that is of interest. The frequency on the horizontal axis in the following Bode plots
is given by wgede = Wrr — W.

5.1 Transfer Matrix Representation of Discrete Sys-
tem

For the purpose of stability analysis, the open loop transfer matrix of the whole system
is required. A discrete system is characterized by the fact that the signal, which has to
be controlled, is sampled, and that the output signal of the controller is kept constant
between two sampling times (sampling period 7). In the block diagram in Figure 5.1, this
is described by the sample and hold block and by the zero-order hold block. In reality, it
is the ADC which performs the sampling and the DAC which delivers a constant output
for a sampling period T;. The feedback controller (digital signal processor) is discrete but
vector modulator, klystron and cavity are continuously working devices. The zero-order
hold guarantees continuous input to these devices. The transition from a continuous to a
discrete representation of a system with both continuous and discrete devices has to be
performed in several steps (see Figure 5.2): Firstly, we have to calculate the total transfer
matrix of the continuous devices in series. In the transfer matrix representation, we only
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Figure 5.2:  Transition from continuous to discrete system model. The continuously
working devices are combined in transfer matrix H,,,;. It is connected in
series with the transfer matrix of the zero-order hold block resulting in
the discrete description Hg, of a continuous module with input from a

discrete controller.

have to multiply the successive matrices of the individual subsystems. Secondly, the total
transfer matrix of the continuous devices is connected in series with the zero-order hold
and then transformed into the discrete representation. This includes the sample and hold
block at the output of the continuous devices. Finally, the discrete feedback controller
and the discrete time delay are connected in series with the discrete transfer matrix of the
device so as to get the open loop transfer matrix of the whole system. Before we calculate
the transfer matrices of the individual subsystems, the transformation from continuous
to discrete is discussed in more detail. A transformation rule will be deduced.

A zero-order hold block gives a constant output y(t) of the discrete inputs uy = u(tx)
at times ¢;, between the sample times t; and 1 =ty + T with £ = 0, 1,2, ... (see Figure
5.3). A single step is described by two Heavyside step functions 6(¢) where 6(t) is 1 for

4 y(ty) Ay(t)

ARnEs

Ts 2Ts 3Ts 4Ts Ts 2Ts 3Ts 4Ts

Figure 5.3: Input and output function of a zero-order hold block.
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t > 0 and 0 elsewhere. The steps at the output are given by
H=> w0t —Fk-T,) — 0t —(k+1)-T,)
k=0

To obtain the transfer matrix of a zero-order hold, we have to apply Laplace transforma-
tion to this equation:

[es) —k: Te-s e—(k—}-l)-Ts-s 1— e—Ts-s 00
y(s) — Z Uy - _ — . Z Uy - e*k-Ts-S
s s =0
1 — e Tss .
= =)
o
with  u*(s) = Z uy - e kTS
k=0

The input u*(s) is defined as the Laplace transformed function of u(¢) which is the discrete
impulse function at sample times ¢t = k 7T}:

u*(s) = [,{Z u(k-Ts)-0(t — k- TS)}
k=0
The transfer matrix for a zero-order hold is
1 —e Tss
Hzon(s) = — 1

where the unitary matrix 1 has the dimension of the input vector u(k-T;). The transforma-
tion from continuous to discrete requires the zero-order hold and the following continuous
transfer matrix to be connected in series. Subsequently, we have to apply inverse Laplace
transformation so as to return to the time domain. Inserting the discrete times t, = k- T}
and calculating the z-transformation, we end up in the discrete complex frequency do-
main. The transition from the continuous to the discrete transfer matrix is illustrated in
Figure 5.4. The discrete transfer matrix Hy,(z) of a continuous plant with input from a
zero-order block is

Hgyis(2) = Z{Eil{Hcont(S) : HZOH(S)Ht:kTS} .

These two transformations are simply written as
Hdis(z) = Z{Heoni(s) - Hzom(8)} -

With the transfer matrix Hzon(s) we get

Hyis(z) = {1 o cont(s)}

_ Z{Hont s } Z{e—Ts-s. Hcont(s)} .
S
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difference equations discrete transfer matrix

Figure 5.4: Transition from continuous to discrete transfer matrix

The factor e~75* represents a time delay 7T, in Laplace domain. The corresponding time
delay in z-domain is a multiplication with % The discrete transfer matrix can be expressed

) Has(2) = (1) z{Hmt(S)} _z=1d -z{c—f {H—()} } RNERY

z S z S

5.2 Transfer Matrices of the Subsystems

In this section, the transfer matrices of the individual subsystems (elements) are deduced.
The digital feedback controller and the time delay are directly described by discrete trans-
fer matrices while the vector modulator, the klystron and the two passband modes (7-
and %ﬁ—mode) of the cavity are given in a continuous representation. The transformation
of these continuous operating devices to a discrete transfer matrix is performed in section
5.3. Most of the transfer matrices for common elements (for example a lowpass filter) can
be looked up in standard text books on control theory and are therefore only listed.

(a): feedback controller
The feedback algorithm is realized as a proportional gain controller with a digital
lowpass filter on the input data. The discrete transfer matrix of a proportional gain
is
Hp(z)=K-1 with gain K .
To calculate the discrete transfer matrix of the digital lowpass filter, we start with
the difference equation 4.1.

Vo (tor) = (1—%)- V. (t) + %-Vw(tk)
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Vo) = (L= ) Tolt) + 5 V(0

To transform this difference equation into z-space, the following transformation rules
have to be applied:

transformation rule: Vthy) — 2-V(2)
Vty) — Vi(z)
Vity) — V(2)

Obeying these rules yields

2z~
~—

In control theory literature, a first order lowpass filter is given by

discrete transfer function:
1 — e wrut'Ts
<— H fm(z) = Z—

continuous transfer function:

w .
Hfilt(S) — filt

s + Wrin — ewries

where T is the sampling period and wy;;; the roll-off frequency. This frequency is de-
fined as the frequency at which the amplitude of the output decreases to 1/1/2 of the
input amplitude. A comparison between the continuous and discrete representation

yields
N - filt — Ts N/ -

The roll-off frequency for different filter parameters N is given in table 5.1. The
transfer matrix of the digital controller is the product of proportional gain and
lowpass filter transfer matrices.

Hctrl(z) = HP(Z) : Hfilt(z) =K-

N
|
—_ 2=
|
2|~
N——

time delay
A time delay T} is represented in Laplace space by a factor of e=7¢* while in discrete
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filter parameter | roll-off frequency
N fritt
N=1 no filter
N =2 ffilt = 110 kHz
N=3 ffilt = 65 kHz
N =4 ffilt = 46 kHz
N=5 frie = 36 kHz

Table 5.1: Roll-off frequency of digital lowpass filter

z-domain it is expressed by a factor of Zim The number m is an integer multiple of
the sampling time T: m = %. The transfer matrix of a time delay is:

Hdelay (Z) = Zim -1 with m = %
In the RF control system of the TESLA Test Facility, the total delay in the feedback
loop is Ty = 5 ps. With a sampling time of Ty, = 1 us we get m = 5.
vector modulator
A vector modulator can be modelled as a lowpass filter with respect to the operating
frequency wgrr . The response of a step input has a limited rise time and is similar
to a first order lowpass filter with roll-off frequency w,... Measurements have shown
that wye./(27) is approximately 10 MHz. The transfer function is given by:

wvec
Hvec (8) B s + Wyec !

klystron

The klystron is a high power RF amplifier with a bandpass characteristic around
the operating frequency wgrr = 27 - 1.3 GHz. It consists of five cavities in series.
The amplitude of the klystron has been measured versus the RF frequency. The
amplitude decreases by 1 dB at a frequency difference of 7 MHz with respect to wgp
[Ga]. In the stability analysis, the transfer characteristic of the klystron is described
by a first order lowpass filter with a roll-off frequency of wy,, = 278 MHz.

W
Hyy (5) = ﬁ -1
Y

cavity
The deduction of the transfer matrix of a cavity starts with the differential equation
3.49 for real and imaginary parts.

£ (50)- (5 2 () e (32) (3
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Applying Laplace-transformation and solving for U, (s), U;(s) yields (with u(s) =
Ry, - I.(t) )
Ry, - I;(t)

o= (V) = st (52 52 (R0

(5.3)

The transfer matrix H(s) defined by y(s) = H(s) - u(s) is therefore given by

_ w1/2 s+ W1/2 —Aw _ Hn(S) H12(S)
Hcav - = 5.4
(8) Aw2 + (8 + 0.)1/2)2 ( Aw s+ wl/g ) ( H21 (8) HQQ(S) ( )

The off-diagonal elements are the transfer functions which describe the coupling
from real to imaginary parts and vice versa. This is illustrated in Figure 5.5.

L ————F———— 2 ——— V(9

= 2L TRl vy

Hoo !

Figure 5.5:  Transfer matrix representation of cavity input current to cavity output
voltage.

As demonstrated by equation 5.4, real and imaginary parts are completely decou-
pled for a cavity operated on resonance (His = Hy; = 0). However, if the cavity
is detuned, the amplitude of the direct transfer functions Hi(s) and Hag(s) are
proportional to - for high frequencies (s = jw):

1
‘HH(S)L |H22(S)‘ ~ ; for |8| > wl/g, ‘S‘ > Aw,

which means the amplitude rolls off by 20 dB per decade. In this case, the cross
transfer functions Hio(s) and Hy (s) are proportional to ﬁ

1
|H12(S)|, |H21(8)| ~ (,(7 for |8| > (.L)l/Q, |$| > Aw,

which is equivalent to a 40 dB decline per decade. The conclusion is that the
coupling of passband mode of a slightly detuned cavity (Aw in the order of wy/s)
becomes negligible for high frequencies. The Bode plots of a detuned and a tuned
cavity are shown in Figure 5.6. The bandwidth of both is fi,» = 215 Hz, and
the detuning is Af = 100 Hz. The transfer matrix H(s) describes one passband
mode. The stability of the RF control system is investigated taking into account
the m-accelerating mode and the closest passband mode, the %W—mode. Since both
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Figure 5.6: Bode plots of the transfer matrix of a detuned cavity (Af =

Left diagrams: Transfer function H; (

s).

Right diagrams: Transfer function Hy(s). The transfer function of the

cavity on resonance is zero.

modes can be excited, they are described by transfer matrices which are connected
in parallel. It has to be taken into account that the m- and the gw—mode have a
phase difference of 7 in the ninth cell in which the field is detected with a pick-up
antenna. Hence, an additional phase shift of 7 has to be applied resulting in a minus
sign in the transfer matrix of the gw-mode.

(wi/2)x s+ (wi/2) —Aw
m-mode  H,(s 4 4
(5) Aw?2 + (5 + (w1/2)r)? Awr s + (w1/2)x
8 (wWi/2) 25 s+ (wiy2)s,  —Aws,
—m-mode H = — 9 g °
97T mode %”(8) Aw%w + (8 + (w1/2)%ﬂ)2 Aw%ﬂ s+ (wl/g)%w
9

HCG.U(S) H’ﬂ'(s) + H%T{'(S)
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In chapter 4.5.2, it has been shown that the dynamics of eight cavities connected
in parallel is similar to the dynamics of a single cavity. Stability investigations can
therefore be reduced to a single cavity.

5.3 Open Loop Transfer Matrix of the Digital RF
Feedback System

After determining the individual subsystems, the open loop transfer matrix can be calcu-
lated. Firstly, the continuous devices are connected in series giving H oni($).

Hcont(s) - Hcav(s) : Hkly(s) : Hvec(s)

The conversion from continuous to discrete representation is performed with the zero-order
hold element by the transformation equation (5.1).
t=kT, }

Hyis(2) = (1 - l) Z{me(s)} == ! . Z {/31 {Lcom(s)}
z s z s

It turns out that the influence of the bandwidth of the vector modulator and the klystron
can be neglected. This is shown in Figure 5.7 and 5.8. In this Bode plot, the direct
transfer functions Hy; = Hye, Hio = —Hy; are displayed in the continuous (thick solid
line) and in the discrete representation (thin dashed line). The sampling frequency of the
digital system is 1 MHz. Consequently, frequencies of up to 500 kHz can be identified.
Due to aliasing, the %W—mode is mapped from 800 kHz to 200 kHz. On account of this, the
amplitude decreases by 10 dB. The description of the continuously working module can
be simplified by neglecting the vector modulator and klystron. The transfer functions of
the discrete transfer matrix of the cavity with two passband modes is plotted as a dashed
line. The difference to the more extended model with klystron and vector modulator is
only visible close to the %W—mode but is negligible in the stability analysis. Therefore, we
reduce our model and investigate only the discrete cavity model.

Hcont(s) ~ Hcav(s) — Hdis(z)

Continuing with the series connection of the time delay Hgeqy(2) and the controller
H_.i(z), we obtain the open loop transfer matrix of the digital RF control system.

Htot(z) = Hdis(z) : Hdelay(z) : Hctrl(z) (55)

The analytical expression for the simplified transfer matrix Hy;s(2) is given in appendix
AT.
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5.4 Stability Analysis with Bode and Nyquist Plots

In the stability analysis for single-input single-output systems (SISO systems), stability
criteria can be derived with the help of the open loop transfer function. In this, the
critical point is where the phase of the open loop transfer function reaches —180°. At
that frequency, the negative feedback turns into positive feedback. If the loop gain is
larger than one (=unity gain) at this point, the condition for oscillation is fulfilled. The
control loop is unstable. This limits the bandwidth of feedback control. The model of the
digital RF control system consists of input/output vectors with two components, the real
and imaginary parts of the voltage. The corresponding 2 x 2 transfer matrices describe
multi-input multi-output systems (MIMO systems). Consequently, the general Nyquist
criterion has to be applied to allow the examination of the stability of the digital RF
control system [Lun 97]. If H;,(z) denotes the open loop transfer matrix, the closed loop
transfer matrix F'(z) (feedback) of the system in Figure 5.1 is calculated to

F(z) = [1 + Hyo(2)]™" Hyor(2) (5.6)

However, a basic idea with regard to stability can be obtained by means of Bode plots of
the direct transfer function (Hyp)11 = (Hiot)20-

The open loop transfer function (Hyy)1; of the total RF system is shown in a Bode
plot in Figure 5.9. To estimate the critical gain K., we start with a DC loop gain of
one (lowest curve in the magnitude plot). The gain margin is determined by increasing
the gain until unity gain is reached at the frequency at which the phase crosses the
—180° line. We obtain a critical gain of K.; = 165 (=44 dB). In practice, a gain below
but close to K. results in overshooting and oscillations around the setpoint when step
function are applied as inputs. This brings us to the subject of parameter optimization
in feedback systems. We have used the method of ZIEGLER and NICHOLS [Lu/We]|. It
uses parameters at the stability limit to determine the operating point of the feedback
loop. The optimal gain for a proportional gain controller is given by

Kopt = 0.5 Kepi -

For the digital RF control system, the optimum gain with this simplified analysis is
Kt = 80. The more exact stability investigation especially with regard to the %ﬂ-mode
has to be performed with the general Nyquist criterion [Lun 97]:

An open loop system with transfer matriz Hy(z) results in a stable closed
loop only if the equation

Aargdet D(z) = —2n*r

is fulfilled, i.e. if the Nyquist curve of det D(z) encircles the origin —n™
times in the clockwise direction. In this, n* is the number of poles of
Hyp(z) with absolute values bigger than one (outside the unity circle).
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With det D(z) = [1 + Hx(2)] being the determinant of the feedback difference matrix
(see equation (5.6)). The curve det D(z) has to be calculated for values of z along the
unity circle. It corresponds to a frequency sweep in the Laplace space s = j0...—joo. The
transformation to z-space given by z = e*’s maps the imaginary axis to the unity circle
in which 7 denotes the sampling time. The precondition for the Nyquist criterion for
digital systems is that the open loop systems have no poles on the unity circle. Calculating
the poles of the transfer matrix Hyy,(z) of the digital RF control system yields that all
poles lie inside the unity circle, i.e. their absolute value is smaller than 1. Therefore, the
Nyquist criterion can be applied and n™ is equal to zero. For stability, the Nyquist curve
must not encircle the origin. In Figure 5.10, the Nyquist curve is plotted on the basis of
a feedback loop gain of 100, no digital lowpass filter (filter parameter N = 1), time delay
T, =5 ps and the frequency of the & gm-mode fs = 800 kHz. With there being no digital
lowpass filter, the loop gain can be 1ncreased up to K.+ = 210. According to the method
of ZIEGLER and NICHOLS, the optimum proportional gain is

Kopy = 0.5 K & 100 .
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Figure 5.10:  Determinant of the Nyquist curve as a function of frequency. The curve
is traversed in the order t; < t9 < t3.

During the operation of the TESLA Test Facility, a digital lowpass filter with a roll-off
frequency of fry: = 110 kHz has been applied to suppress sensor noise at 250 kHz. The
effect of the lowpass filter for different roll-off frequencies is shown in Figure 5.11. The
applied digital lowpass filter suppresses the sensor noise at 250 kHz by 7 dB approximately.
The %W—mode is aliased to 200 kHz and consequently suppressed by approximately the
same factor. The theoretical critical gain due to the digital lowpass filter with fz;; = 110
kHz is reduced to 190 leading to a optimum gain of K, ~ 95. This is in agreement with
the performance of the control system during operation. To minimize the overshoot after
step responses, the loop gain was set to 70 (see Figure 4.16). Such step responses are for
example power reductions that occur when the nominal accelerating gradient is reached
after filling the cavity or injection of beam. This injection is equivalent to a step in the
driving current of the cavity.

The difference frequency A fgjor of the gﬂ—mode with respect to the operating fre-
quency is assumed to be in the range of 800 kHz. However, the TESLA cavities show a
distribution of this frequency difference due to minimal variations occasioned in the man-
ufacture of the cavities in the order of several 10 kHz. A variation of this parameter in the
stability analysis has shown that the critical gain K.;; depends on the difference frequency
Afgor. The stability analysis has been carried out with different settings of A fs/9. and
different filter parameters fry:. The gw—mode can reduce the maximum achievable gain.
This can be understood with the help of the Bode plot of the open loop transfer function
(Hiot)11 (Figure 5.9). The amplitude of the transfer function shows the transmission of
the gﬂ—mode at the aliased frequency around 200 kHz. At this frequency, the phase varies
with frequency due to the loop delay and due to the passband mode. A change in the
frequency of the %W—mode by Afgjor leads to a phase shift of Ap = 27A fg/9r - Ty in
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which T, represents the loop delay. Depending on this delay, the feedback can be positive
or negative. In the TESLA Test Facility, the accelerating fields of several cavities are
controlled by one feedback system. The vector sum consists of the transmission of the
m-mode of all cavities. They are tuned to the same frequency of the m-mode. However,
the frequency spread of the %W-mode results in a transmission in the range of around 800
kHz below the fundamental mode frequency. Consequently, the sum of all %W-modes can
have a much lower transmission than that in a single cavity. During the operation of the
linac, no instabilities caused by this passband mode have been observed.
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Figure 5.11:

amplitude [dB]

50

0l -
\_ fe = 46 kHz /w v -
_5800 | 162 | 164 - 10°

frequency [HZ]

Effect of digital lowpass filter on the direct transfer function (Hy)11. The
Bode plots show the effect of the lowpass filter with three different roll-off
frequencies.

With fry; = 110 kHz: transmission of the %W—mode suppressed by 7 dB.

With fsy; = 46 kHz: transmission of the gw-mode suppressed by 13 dB.
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Chapter 6

Mechanical Properties of the TESLA
9-cell Cavity

Superconducting cavities have high unloaded quality factors )y which are in the order
of 10° to 10!*. The optimum external Q.,; depends on the beam loading and is usually
smaller than @y by a factor 103 to 10%. Therefore, the loaded @, is a good approximation
of the external .,;- The resulting bandwidths of the resonators are in the order of a
few hundred Hertz. The mechanical properties of superconducting cavities differ from
those of normal conducting cavities on account of different materials and wall thicknesses
being used and on their being employed under different operating conditions. Normal
conducting cavities (usually copper cavities) are manufactured so as to be rigid so that
they are mechanically stable and will withstand the great heat that is caused by the high
dissipated power of several 10 kW per meter in a typical accelerating structure. Since
the material used for the TESLA cavities is niobium of high purity, the costs increase
with increasing wall thickness. In addition, the cooling capacity of superfluid Helium
has to be taken into account. Consequently, the design of superconducting cavities makes
them more susceptible to mechanical disturbances such as external mechanical excitations
(microphonics) or Lorentz force detuning.

Microphonic noise modulates the resonance frequency of the cavities and changes the
initial conditions at the beginning of an RF pulse. The knowledge about the micro-
phonics level is of importance because several requirements for the RF control system
are dependent on this level. Stochastic fluctuations of the resonance frequency that are
due to microphonics demand extra RF power to maintain a constant accelerating field.
Besides that, the stochastic errors in amplitude and phase have to be compensated for by
a feedback system. The suppression of these errors requires a minimum gain to reduce
the contribution to the energy spread. Finally, it has been discussed in chapter 2.1.3 that
depending on the microphonics the calibration of the vector sum has to be within certain
tolerable limits to keep the energy gain errors due to calibration errors small.

Lorentz forces detune the cavities repetitively from pulse to pulse. The dynamics has
to be understood if more sophisticated feedback algorithms are to be applied to cavities
operated in pulsed mode. It is planned to implement state estimators and Smith predictors
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[Lev 95]. Based on the knowledge of the present driving term state estimators predict
the state of the system in advance. The smith predictor compensates time delays in the
feedback loop. These algorithms are based on a mathematical model which describes
the control system. Since the detuning Aw of a cavity is one of the parameters in these
models, the objective is to find a proper mathematical description of the dynamics of
Lorentz force detuning.

Besides that, the pulsed operating mode of the cavities (with a pulse repetition rate
of up to 10 Hz) represents a repetitive excitation of the niobium resonators. The struc-
tures may have mechanical resonances which could be excited by the periodical Lorentz
forces. The build-up of a mechanical resonance leads to an oscillation of the electrical
resonance frequency with an amplitude that depends on the quality factor of the mechan-
ical resonance. If the amplitude of this frequency oscillation exceeds the power limit of
the klystron, it is no longer possible to control the vector sum. This behavior has already
become manifest in the operation of superconducting cavities in other accelerator labo-
ratories [Doo/Sim|. In this chapter, the measured microphonics in the first accelerating
module of the TESLA Test Facility is presented. Furthermore, it provides information
about the studies performed on the Lorentz force detuning of the 9-cell cavities. Fi-
nally, resonance measurements of a TESLA cavity at room temperature are presented
and compared to the excitation measurements of cold cavities.

6.1 Microphonics in the Module

Microphonics has been measured by means of the method described in section 4.4, ac-
cording to which the resonance frequency is determined at the end of the RF pulse. For
this purpose, the vector sum of seven cavities has been regulated at a constant gradient
for several hours. The cavity filling time and the flattop period have been set to the
design values of 500 us and 800 us respectively. During the first run of the linac, the
mechanical tuners (stepper moter) were not used. The tuners are expected to compen-
sate slow resonance frequency variations on a time scale of several seconds. The resulting
resonance frequency measured at the end of the RF pulse versus time is shown in Figure
6.1. The variation in all cavities follow the same slow time dependency. Measurements
of the helium pressure have indicated that a correlation between frequency and pressure
variations with time constants in the order of several minutes. Tuner control of the indi-
vidual cavities could reduce the fluctuations of the resonance frequencies wy. The residual
distribution of microphonics has been calculated on the assumption that the slow drift of
wp is compensated by the mechanical tuners. This will be demonstrated on the example
of one cavity.

In Figure 6.2, the variation of the detuning of one cavity is plotted versus time (left
diagram). When plotting the resonance frequency spread for the resonance frequency
variation as shown in the left diagram, this results in a Gaussian distribution around the
mean value -19 Hz with oay = 4 Hz. The measured microphonic levels in the cavities
are given in table 6.1. The mechanical tuners have been in a fixed postition. The he-
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Figure 6.1:  Long-term variation of the resonance frequency wy of the cavities in the
module. The variation of wy is measured after the RF pulse has been
turned off.

lium pressure has been measured only every eight minutes. The measured peak-to-peak
variations have been below 0.25 mbar. The detuning of the cavity drifts on a time scale
of several minutes indicated by the different intervals in Figure 6.2. Based on the as-
sumption that tuner control compensates these slow drifts in the time intervals, only the
detuning variation to a interpolated straight line is calculated. The result is plotted in
Figure 6.3. The distributions have a Gaussian shape. If there was a dominant frequency
in the microphonic spectrum, the most likely resonance frequency of the cavity would be
at the limits of the microphonics range. The probability density has its maximum at the
turning points of the oscillation. This is illustrated in Figure 6.4.

Measurements in the horizontal cavity test stand have shown similar results. Am-

cavity no. | oay (rms) | cavityno. | oas (rms) |
1 4 Hz ) 9 Hz
2 5.5 Hz 7 4.5 Hz
3 5 Hz 8 6.5 Hz
4 7 Hz

Table 6.1:  The rms errors of the microphonic noise levels of the cavities in the TTF
cryomodule.
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Figure 6.2:  Variation of the detuning of a single cavity in the cryomodule.

left diagram: The solid line indicates the assumed frequency correction by
a mechanical tuner. The residual microphonics is calculated with respect
to this line.

right diagram: The resonance frequency spread is plotted to demonstrate
the resonance frequency variation shown in the left diagram. The me-
chanical tuner has been in a fixed position, i.e. no tuner control has been
applied.

plitude and phase of a nine-cell cavity were controlled by the digital RF system. The
resonance frequency variation due to microphonics was 11 Hz (rms).

In chapter 3.3 it has been shown that in the case of TESLA and a beam current of
Iyy= 8 mA and accelerating gradients of 25 MV/m (loaded @ = 3 - 10°), the required
generator power per meter of acceleration length is given by

2
P, — 50 - ( (ﬁ) )
Ji/2

The TTF RF system has been designed to cope with microphonics noise levels of approx-
imately +50 Hz. Lorentz forces contribute to a detuning of +200 Hz [CDR 500] with
optimum predetuning. This results in a maximum total detuning Af of 250 Hz. The
required extra RF power in this case is 30%. Assuming a maximum detuning of +20 Hz
due to microphonics, this margin is reduced to 26%. It has been demonstrated that it is
possible to keep the microphonic noise level below 10 Hz (rms) provided that the helium
pressure variations are sufficiently small. Even without mechanical tuner control can the
RF control system fulfill the requirements for the TESLA Test Facility with regard to
amplitude and phase stability. If these conditions can be achieved for TESLA 500 op-
erating at gradients of 25 MV /m, the question arises whether it is really necessary for
mechanical tuners to compensate the resonance frequency variations on a time scale of
several minutes.
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Figure 6.3:

Microphonics in the TTF module. The change in resonance frequency due
to slow helium pressure variations can in principle be compensated by the
use of the mechanical frequency tuner with a control bandwidth of < 1
Hz. In the first weeks of operation, the individual tuners of the cavities
were in a fixed position. These plots demonstrate the microphonics of the
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6.2 Lorentz Force Detuning

In this section, the influence of high accelerating fields on the resonance frequency in
superconducting cavities is discussed. The static detuning of a resonator due to the
action of Lorentz forces is proportional to the square of the accelerating field (see chapter
3.4, equation (3.53)).

Afo = (fo) = (foh = —K - Eg,, (6.1)

This relation has been verified several times in continuous-wave operation. To determine
the Lorentz force constant of TESLA cavites, two different types of measurements have
been performed. The result is shown in Figure 6.5. In the left diagram, the cavity has
been phase locked on resonance. The shift of the resonance frequency is plotted versus the
square of the accelerating field. The result shown in the right diagram has been obtained
by operating the cavity with constant RF input power and measuring the gradient at
various frequencies. Due to Lorentz force detuning, the resonance curve is tilted. It
is not possible to measure the unstable range below the bent curve. Starting with a
frequency above resonance, the frequency has been reduced in steps. The field in the
cavity reaches the maximum and then immediately returns to the lower branch of the
gradient curve. Starting below the resonance frequency and increasing the RF frequency
leads to a gradient following the Lorentz curve to the turning point where the resonance
frequency drops again with increasing gradient. There, a jump to the upper branch occurs.
Fitting a tilted Lorentz curve to the measured data results in a Lorentz force constant
of K=0.9 Hz/(MV/m)?. The two measurements have been performed with two different
cavities. The results are very close to the computed value of K =1 Hz/(MV/m)?.

98



0 7
6!
-100 | E 51
—_ >
T 200 | = ‘
- £ 3
g 3
B 2}
-300 (]
1!
-400 : : : 0 T " .
0 100 200 300 400 -80 -60 -40 -20 0 20 40
E2. [(MV/m)?] Af [Hz]

Figure 6.5:  Static Lorentz force detuning.
Left diagram: Measurement of Lorentz force parameter K.
Right diagram: Resonance curve of a superconducting cavity with Lorentz
force detuning. The dotted curve is an ideal Lorentz curve. Depending
on the gradient, the cavity resonance frequency is shifted in proportion
to the square of the accelerating field E,... The measured points are
indicated with triangles.

However, in the linac of the TESLA Test Facility, the 9-cell cavities are operated in
pulsed mode. The maximum pulse repetition rate is 10 Hz i.e. there is a 100 ms time
difference between the pulses. The cavity time constant 7 is in the order of 300 to 700 us
depending on the loaded Q1. As a consequence, the cavity field at the beginning of each
pulse is zero. Filling a cavity with RF power results in an increase of the electric field
E..c. and hence to detuning due to Lorentz forces. On account of the inertia of the cavity
walls, the shift of the resonance frequency does not immediately follow the quadratic
dependence of the field which is only valid for steady-state conditions. The resonance
frequency changes with a dynamic behavior. Measurements carried out with a different
type of a superconducting cavity in pulsed mode (MACSE cavity, [Mos 93]) have shown
that the dynamics can be described by a first-order differential equation (see chapter 3.4).

Tm - AW(t) = —(Aw(t) — Awr) — 27K - B2 (1) (6.2)
Aw(t) = wo(t) — w

Simulations carried out for the TESLA cavity resulted in a mechanical time constant of 7,,
of 1 ms. To examine this description, the time dependence of the resonance frequency has
been measured during an RF pulse. For this purpose, a single cavity was regulated with
regard to amplitude and phase by the digital RF control system. As described in chapter
4.4, the resonance frequency of a cavity can be determined immediately after turning off
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the RF power. The setpoint of the amplitude of the cavity has been set to the curve shown
in Figure 6.6. The feedback system forced the cavity field to rise exponentially with the
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Figure 6.6:  Accelerating field for Lorentz force detuning measurement. The ampli-
tude setpoint of a single cavity is set to the time dependence shown.

time constant 7.; and independently of the cavity time constant 7.,,. After 500 us, the
field is kept constant at E, (flattop) for 800 us. The field decay follows an exponential
curve with the cavity time constant 7.,,. The resonance frequency has been measured
by turning off the klystron from macro pulse-to-macro pulse at different times within the
pulse. Microphonics modulates the resonance frequency, which is why the klystron pulse
length has been kept constant over several pulses in order to obtain sufficient statistical
values for the calculation of the mean value of the resonance frequency. The mean value
is plotted versus time in Figure 6.7. The accuracy of the detuning measurement is better
than +3 Hz if the cavity field is above 1 MV/m. The analytical solution of the first-order
differential equation (6.2) for the applied accelerating field E,..(t) is given in appendix
A.8. The result of the numerical fit of the measured data is plotted as solid lines in the
Figure 6.7. The fit parameters for the individual cavities are the Lorentz force constant
K, the mechanical time constant 7, and the initial pre-detuning Awy. The cavity time
constants 7., have been determined experimentally from the exponential field decay.
The analytical solution shows that the Lorentz force constant K always appears as a
product with the cavity field Ey or E; (see Figure 6.6). The cavity gradients have not
been calibrated precisely enough, which is why the values of the individual K cannot be
determined by this fit procedure. The mechanical time constants 7, are between 130 and
400 ps. The best fits of the seven cavities are those of cavity 1, 5 and 7 whose mechanical
time constants are between 300 us and 400 ps. The gradients in the cavities have been
different during the measurements of the detuning. The range has been between 8 MV /m
(cavity 8) and 15 MV/m (cavity 4). This results in different absolute detunings within
the 1300 us RF pulse as seen in Figure 6.7.
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Figure 6.7:  Cavity detuning during a macro pulse due to Lorentz forces. The crosses
mark the mean value of the measured detunings while the solid line is the
fit of the analytical solution of the first-order differential equation.
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The first-order differential equation is able to describe the dynamics of the detuning
Aw(t) qualitatively. However, all the cavities show a steeper return to the initial pre-
detuning during the field decay (after 1300 pus) than the fit could explain. The resonance
frequency still changes during the flattop condition between 500 ps and 1300 s, which
is equivalent to a continuing dynamic behavior. The steady-state condition, in which
detuning is proportional to the square of the accelerating field, is not yet reached after
1300 ps. Since the first-order model cannot describe the dynamics precisely, the question
remains whether an approach with a higher-order differential equation could solve this
problem. Even if the description made on the basis of the first-order differential equation
is used, it still has to be clarified whether the mechanical time constant 7, is dependent
on the gradient. This has to be investigated with the help of cavities which are able to
reach higher gradients than 20 MV /m since the effect of Lorentz force detuning increases
quadratically and therefore provides higher precision in determining the parameters 7,
and K. Different approaches in the description of Lorentz force detuning are given in
[Hiin 98].

Assuming that the description of the detuning by a first-order differential equation with
a gradient independent time constant 7, (which is in the order of 400 us) is appropriate
the consequences for the operation at 25 MV/m would be remarkable. The dynamic
behavior of the resonance frequency of a cavity with the mechanical parameters 7,,, = 400
us and K = 0.9 Hz/(MV/m)? is plotted in Figure 6.8. The resonance frequency change

300 T T . 'y
Tm =400 us
— Hz
200} K = OQW
Eacc=25MV/m
100' A 7
= Af ~510 Hz
T
5 0 tinj Af~315 Hz
-100r
—-200r
fl||.lng. | fllattoplx | '[0‘ff o
~300, 200 400 600 800 1000 1200 1400 1600 1800 2000
time [us]

Figure 6.8:  Theoretical Lorentz force detuning of a cavity operated at 25 MV /m. The
cavity filling time is 500 us and flattop up to 1300 ps. The mechanical
parameters are 7, = 400 s and K = 0.9 Hz/(MV /m)2.

in this model during flattop is approximately 315 Hz, the total change is 510 Hz. This is
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100 Hz more than the expected 400 Hz at this gradient and time structure. Calculating
the required klystron power for the steady-state condition (equation (3.46) ) which can
be assumed during flattop provides us with the power versus detuning shown in Figure
6.9. With an initial pre-detuning of +300 Hz (i.e. the resonance frequency is 300 Hz

320 - 0= 39
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Figure 6.9:  Required klystron power per cavity for a TESLA 9-cell cavity operated at
design conditions (beam current: 8 mA; F,., = 25 MV/m; Q1 = 3 - 105;
beam phase ¢, = —3°) as a function of detuning. The curve is calculated
for steady-state which can be assumed during flattop.

above the operating frequency of 1.3 GHz), it is possible to keep the required extra power
due to Lorentz force detuning below 25% during flattop. However, further studies have
to be carried out to find the optimum filling time and curve on which the cavities have to
be filled in order to stay below the given power margin of 30% for amplitude and phase
control.

6.3 Mechanical Resonances of the Cavity

Theoretical calculations of the vibrational mode spectrum have been made with finite
element codes [Mar 93]. The spectrum has been calculated for three different configu-
rations: the bare 9-cell structure (without stiffening rings), the stiffened structure and
the stiffened, constrained structure. The effect of the helium vessel has not been taken
into account. The result of these calculations are eight transversal and four longitudinal
modes in the frequency range below 1000 Hz. These frequencies are quoted in Table 6.2
(first column). These frequencies are calculated for the cavity without HOM and input
couplers.

103



During the operation of the linac, no strong excitation of mechanical resonances has
been observed. This has been concluded from the results of the microphonic measurements
shown in Figure 6.3 and 6.4. Additionally, experiments have been performed to excite
mechanical resonances by the Lorentz force itself. The experimental setup is sketched
in Figure 6.10. The cavity has been operated in continuous-wave mode at a gradient of
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Figure 6.10:  Experimental setup for mechanical excitation by Lorentz force.

7 MV/m with a loaded @y, of 1-10® and phase locked on resonance by controlling the
detuning angle (phase between incident and field probe signal) to zero. A signal generator
together with a bias voltage provided an amplitude-modulated low frequency signal (f <
4000 Hz) at the input of a vector modulator. Modulation of the incident wave results in
a modulation of the gradient in the cavity. This variation of the gradient corresponds to
differently powerful Lorentz forces and hence to a modulation of the resonance frequency
of the cavity (Af, = —K-E?2,.). The sweep of the excitation frequency has been performed
with a signal generator. If the excitation frequency agrees with a mechanical resonance,
the phase control signal would be enhanced by the quality factor of this resonance. The
spectrum of the phase control signal has been scanned with a lock-in amplifier. The
same measurement has been carried out at TJINAL with a 5-cell cavity (1497 MHz) at an
operating temperature of 2.0 K. These cavities are not stiffened by stiffening rings and
they have a Lorentz force detuning constant of K = 3 Hz/(MV/m)?. They show two
closely spaced mechanical resonances at about 66.3 and 64.7 Hz with mechanical quality
factors of several hundreds [Doo/Sim|. The measurement performed with a TESLA 9-cell
cavity has not revealed any significant enhancement of vibrational amplitudes.
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Another approach adopted to determine mechanical resonance frequencies has been
the measurement of mechanical vibrations of a constrained TESLA cavity at room tem-
perature. For this purpose, a cavity was mounted onto a rigid aluminium support. The
end flanges were fixed on the support to simulate the constraint by the helium vessel.
Although this fixture differs from the actual one, in which the cavity is welded into the
helium tank and mounted with a mechanical tuner, it gives an indication of the number
and location of the resonances in the frequency spectrum. The excitation of the cavity
was performed with sound waves coming from a loudspeaker. As a vibrational sensor, a
piezoelectric crystal was used in combination with a lock-in amplifier which drove the loud-
speaker. The aim of this measurement has been to detect the frequencies of mechanical
resonances rather than to determine the resonance amplitude. Vibrations of the ground
and of the aluminium support were measured first. Resonances at these frequencies were
regarded as external vibrations which are not related to a cavity resonance frequency.
Several resonances were found. Table 6.2 lists the detected mechanical resonance frequen-
cies (second column). The strongest detected one is around 175 Hz. The amplitude of
this resonance is shown in Figure 6.11. The corresponding phase curve in the same Figure
shows the inverse tangens function as expected for a mechanical resonance. The quality
factor of this resonance has been determined to be ),,, = 115. All other resonances have
quality factors in the same order of about 100 or less. It has not been possible to identify
the measured resonances with the theoretical calculations. However, the measurement
has shown that the theoretically calculated number of resonances is in the range of the
observed resonances. Until now, mechanical resonances have not been excited extensively
during the operation of the linac.
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Table 6.2:

calculated vibrational
modes [Mar 93]

mechanical modes of
the constrained cavity

(constrained) (at room temperature)
70.9 (1) 96 Hz
181 (T) 175 Hz
934 (L) 239 Hz
322 (1) 981 Hz
465 (L) 395 Hz
474 (T) 353 Hz
621 (T) 381 Hz
693 (L) 486 Hz
748 (T) 507 Hz
844 (T) 565 Hz
900 (T) 696 Hz
915 (L) 764 Hz

860 Hz
1010 Hz
1158 Hz
2075 Hz
2698 Hz
2725 Hz
2751 Hz

Calculated and measured mechanical resonance frequencies.
Left column: calculated vibrational modes of the constrained 9-cell cavity
without HOM and input coupler. (T) stands for transversal vibrational

modes, (L) for longitudinal modes.

Right column : mechanical modes of the constrained 9-cell cavity at room
temperature. The constraint imposed by the helium tank has been simu-
lated by means of fixing the cavity to the aluminium support at the end

flanges.
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Figure 6.11:  Mechanical resonance of a TESLA cavity. The measured values are indi-

cated by crosses which are connected by a solid line.

Diagram above: Lorentz curve of the mechanical resonance curve. The
amplitude is plotted versus the excitation frequency.

Diagram below: Phase curve of the mechanical resonance curve. The
phase between measured control signal and excitation signal shows an
inverse tangens function.
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Chapter 7

Conclusion and Outlook

In this thesis, a digital RF control system has been developed to control the vector sum of
the accelerating field of eight superconducting 9-cell cavities powered by a single klystron.
It is the prototype for a possible RF feedback system for the TESLA 500 linear collider.
The RF control system is implemented as a driven feedback system and has been installed
at the TESLA Test Facility at DESY (Hamburg, Germany). The challenge that the design
and development of an RF control system poses is to cope with disturbances which result
from the pulsed operation of superconducting cavities, especially the detuning caused by
the action of Lorentz forces. The objective of providing a constant accelerating field in
order to minimize the energy spread was successfully reached within a few hours after
turning the system on for the first time. This is mainly due to the extensive build-in
diagnostics of the digital system, which provides access to the state of each cavity field
during the RF macro pulse. Gradient and phase are measured as a function of time in
each cavity. A sampling rate of 1 MHz has been chosen to guarantee a sufficiently fast
response to disturbances. The main errors have been expected to come from microphonic
noise and Lorentz force detuning. During the first run, it turned out that the microphonic
noise level had been below 10 Hz (rms), which corresponds to a phase error of less than
+2° in cavities with a loaded @, of 1.8-10°. The eight superconducting cavities in the first
cryomodule of the TESLA Test Facility were operated at an average gradient of up to 16.7
MV /m resulting in electron beam energies above 120 MeV. In addition to the feedback
control system, an adaptive feed forward scheme has been applied to suppress repetitive
errors. Since statistical perturbations (e.g. microphonics) of the accelerating field were
on the 10~* level, adaptive feed forward stabilized the amplitude of the accelerating field
to 5-10"% (rms) and the phase of the RF field with respect to the beam to a value better
than 0.05° (rms). The achieved stability is better than that required for the TESLA Test
Facility by a factor of 10. This performance was reached with a beam pulse length of 30
us and has to be verified for the design beam pulse length of 800 us.

Studies of the mechanical properties of the TESLA 9-cell cavities have shown that
the transfer of external vibrations to the cavities is well below the maximum tolerable
value of 450 Hz for which the RF control system and the klystron with its power margin
of 25% have been designed. Investigations of the dynamic behavior of the resonance
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frequency wy(t) of cavities under the influence of strong Lorentz forces have pointed out
the qualitatively good agreement between the measured data and the description by a
first-order differential equation. However, this model cannot explain the fast return of the
resonance frequency to the initial pre-detuning after turning off the RF power. Further
measurements have to be performed to provide an answer to this question in more detail.

In a next step, the digital RF control system has to prove that it is capable of fulfilling
the requirements with regard to amplitude and phase stability when the control of the
vector sum of the present eight cavities has to be extended to 24 cavities. In this, the
field stability of the first eight cavities has to be studied within the control section of
24 cavities. This is important because a bunch compressor will be installed after the
first cryomodule which requires a tight phase stability of the accelerating field of the
first cryomodule. The design of the fully digital system provides high potential for more
sophisticated control algorithms which can be implemented in future. This includes Smith
predictors to compensate for delay times in the control loop, Kalman filtering, which
provides the best reconstruction of the state of a system in the presence of statistical
noise, and state estimators, which estimate the full state based on the measurements of
only a part of the states. Moreover, the extensive access to information about the state
of the individual cavities during an RF pulse allows system identification. Based on this
design, many RF control-related procedures can be automated similar to the automated
loop phase adjustment already installed. As the objective is an RF control system for
TESLA 500 with nearly 20000 cavities, automatisation has to be extended to include tuner
control (mechanical stepper motor), RF exception handling, which guides the operator
in recovering the system in the case of RF failures, quench detection of a cavity within
a control section, etc. The operation of the TESLA Test Facility with its planned eight
cryomodules will permit more experience to be gained with regard to the implementations
required for the operation of a large ete™-collider.
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Appendix A

Appendix

A.1 Effective Accelerating Voltage of an RF Cavity

In computing the energy gain of a particle passing through a cavity filled with RF, the
electromagnetic fields varying in space and time have to be taken into account. The
accelerating voltage V,.. seen by the particle after the passage is defined as the energy
gain divided by the charge of the particle. In the following, only the special case of the
m-accelerating mode in a standing wave structure and a relativistic beam (v ~ ¢) are
discussed. The accelerating field on axis is written as

E,(z,t) = E(2) - cos(wt)

where w = 27 f is the frequency of the RF. We choose the coordinate system as shown
in Fig. A.1. The time axes is choosen in such a way that the particle passes the origin

-L/2 0 +L/2

Figure A.1: Coordinate system of an RF cavity
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(center of cavity) at time ¢t = 0. Therefore,
z=c-t

In this case the accelerating voltage is

+L/2
Ve = / E(z)-cos(gz)dz (A.1)
_L)2 ¢

If the particle injection is delayed by a time ¢, then
z
Z:C'(t—tb) <~ t=—+1
c
which means the particle reaches the center of the cavity at the delayed time t,. If we

look at the co-moving frame which moves along with the particle, the electrical field E,
seen by the particle is given by

Ey(5t(2)) = E,(z)=E(2) -Cos(w-(g—i-tb))
— E(2)- (cos(%z) - cos(wty) — sin(22) sin(wtb)>

Defining ¢ = wt, as the phase due to the delay, the accelerating voltage which acts on
the particle is

+L/2
Vacc(tb) = /Ep(Z)dZ
—L/2
+L/2 +L/2
= cosp- / E(z)-cos(gz)dz — sing - / E(z)-sin(gz)dz (A.2)
~L/2 ¢ —L/2 ¢

For symmetric field distribution F(z) = E(—z), the second integral in eq. (A.2) vanishes.
The first integral is defined as the maximum accelerating voltage of the cavity V.. With
equation (A.1), the dependence of the accelerating voltage of delay time ¢, is

Vaee(ty) = Ve - cos p = V. - cos(wty) (A.3)

Fig. A.2 shows the accelerating voltage versus phase ¢ = wt,. Injection with no delay
is called injection on crest (point (1) in Fig. A.2). This means that a particle reaches
the center of the cavity when F(z,t) is at its maximum. A delay by a quarter of an RF
period (yp = %) is injection at zero crossing (point (2) in Fig. A.2) and point (3) 180° out
of phase which means deceleration of the particle.
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(3) 180° out of phase

Figure A.2: Dependence of accelerating voltage versus injection phase ¢

A.2 Amplitude and Phase of an LCR circuit
The individual impedances in an LCR circuit are
ZL:Z'(A)L 3 ZRIR ; ZCI,—

The total impedance is therefore
1 _ R
ztortiwC  1-iR(L - wC)

Ztot =

or with the quantities wy and @Qq

Lo (2 - 5)
A sinusoidal current I(t) results in a voltage V () according to
V(t) == Ztot - I(t) .

Since this is a multiplication in the complex plane, we get the same time dependence for
V (t) but with a phase shift .

V(t) =V -sin(wt + 1)

The absolute value of Z;,; = | Z;4| - €% is calculated to

R

‘Ztot‘ = 2
Jreas(e-2)

112



and the phase 9 to

tany) = Q) (ﬂ - i) (A.6)
w wWo
The complex impedance Z;,; can therefore be expressed as
R
Lot = ——————— AT
LT 1 —itan Y (A7)

With V = [ Ztot| - fo, we end up with the same equations for phase 1/ and amplitude V as
in equation (3.20) and (3.21).

A.3 Lossless Transmission Line

The wave equations of a lossless transmission line for the voltage V' and the current I is
derived for a transmission line which consists of two conductors separated by a dielectric,
e.g. a co-axial line. The analysis of a transmission line can be based on lumped-circuit
elements where it is decomposed into elementary parts of length dr. Each elementary
part consists of series inductance L' and a shunt capacitance C’ per unit length (see Fig.
A.3). Applying Kirchhoff’s rules and expanding the functions in first order we get

I(X)  L'dx |(X+dXx)
coax cable —_ —

V(X)l C(,j:;::: lV(x+dx)

(e} O

! | >

X X+adx

Figure A.3: Elementary equivalent circuit of a transmission line with series inductance
L and shunt capacitance C. L' and C' are the inductance and capacitance
per unit length respectively.

Ve +ds) = Vig)+ g—zd@« — V(@) +dV
Iz +dz) = I(z)+ g—idfc = I(z) — dl¢
The induced voltage is given by
av. = g—‘;daz =dVipg = —L'dzx - %
& % S alg’;’ ) (A.8)
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The current through the capacitance can be written as

ov oI
fr ! (R
dl, = Cldz 5 g dx
I (z,t) , OV (z,t)
= —C'. A.
© Tor ¢ ot (4.9)
Differentiation of equation (A.8) with 2, equation (A.9) with 2 and substitution of ;22
yields
o*V o’V
— = L'C'—. Al
0z? ¢ ot? (4.10)
01 0*1
— = L'C'—. A1l
0z? ¢ ot? ( )

These two equations are wave equations of the transmission lines with phase velocity

1
= o

The general solution of the differential equation (A.10) and (A.11) are forward and back-
ward travelling waves with amplitudes V+, V_, i+, i_, respectively. These amplitudes are
complex quantities (phasors) which contain an initial phase at ¢ = 0. Complex voltages
and currents are written in bold-face letters.

(A.12)

V(z,t) = V,ellwika) o v _gilwtthe) (A.13)
I(z,t) = I ek 4 I gilwt+ha) (A.14)
with wave number k = 2= = wv/I’C". In order to derive the relation between (V, I,)

Uph
and (V_, I), the general solution (eq. (A.13) and (A.14)) has to be inserted in equations
(A.8) and (A.9). Taking equation (A.8) we obtain

%—Z = —ik (V+ei(wt—kw)) + ik (Vﬁei(wﬂ—kw))
é —LI% =1 (’Lw (i+6i(Wt_kw)) 4 Gw (i_ei(wt—l—kw)))
- i(L’u;L — k\Af+) ilwi=kz) i(L'wi_ + k\;—_) eilwt+kz) _ (A.15)

This equation can only be fulfilled for all z and ¢ if L’wi+ = k\A/'+ = w\/L’C’V+ and
L'wl_ = —kV_ = —wvL'C'"V_. This yields

.V . V_
I, = —L+ and I=—r. (A.16)
c’ [«
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The quantity \/é—l, has the unit of an impedance and is defined as the characteristic
impedance of the transmission line. It relates voltage and current of a travelling wave.

LI

The general solution of the transmission line (eq. (A.13) and (A.14)) can therefore be
written as

transmission line:

V(z,t) = Vyu(z,t) + Viep(z, t) (A.18)
— v+ei(wt—k:c) + V_ei(wt—kkx) (A19)
I(z,t) = Iw(z,t) + Lep(z,t) (A.20)
v, . v
— Tt ji(wt—kz) _ ¥~ i(witka) A21
7, ° 7. ° (A.21)
with forward wave:
Vip(z,t) = V,eltko (A.22)
Vi s V jor(2,1)
I — Tt i(wt—kz) _ Jor\:Yy A9
fo"'(x’ t) ZO € ZO ( 3)
and reflected wave:
Viep(z,t) = V_elwtha) (A.24)
A\ Ve (2, 1)
Lop(z,t) = ———¢iwithe) o Yrelin?) A.25
fat) =~ . (A.25)

The minus sign in front of I,.; indicates the counterflowing current while the voltages of
forward and backward waves just add up.

A.4 RF Component of a Bunched Beam Current

In the equivalent LCR circuit diagram of a cavity, the RF generator and the beam are
represented as a current source. While the RF generator delivers an AC current with
harmonic time dependence, the beam current has a pulsed structure. The beam current
is nearly always given as an average DC current. Therefore, one has to take the Fourier
component of the beam current at the same frequency as the RF generator with time
dependence e™*. In the steady-state case we start with a beam structure shown in Figure
A.4. A single bunch is described by a Gaussian curve with standard deviation oy.

Q - -5
I(t) = -e 7 =] e ¥
(t) oo, peak
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Figure A.4: Time-structure of a beam current with Gaussian-shaped bunches. The
bunch spacing is 7; and the bunch width o;.

where () is the total charge in a bunch. Fourier decomposition on the intervall [T}, /2; +13/2]

gives
+o0o

I(t) = % + > (an cos(nwot) + by, sin(nwt)) (A.26)
n=1
with
2T
Wy = T
an = leeak 27{2 .e_n2w(2)at2/2 n— 0,1’2,...
Ty
b,n = O n= 1’2’3’...
With the definition 0
O 0
Iy = Lyear - V21 — = —
b0 peak 7TTb T,

the Fourier spectrum of the beam current can be written as
Ay =2 - Iy - e w0002
For short bunches o; < T}, the Fourier component at the operating frequency is simply
Iy = a,(1300MHz) ~ 2 - I .

The DC component is equal to Iy, as seen in equation (A.26). The parameters for the
TTF Injector IT and TESLA 500 are shown in table A.1. The spectrum of the beam
current, of the TTF injector II is plotted in Figure A.5.

A.5 Cavity Power Equation

To deduce the relation between the required generator power necessary to accelerate
beam and the accelerating voltage V,.. = V.4 cos @y of the cavity, we start with the
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| [ TTF Inj. 11 | TESLA 500 |

bunch charge Q) 8.0 nC 5.8 nC
bunch length o, 3.3 ps 2.3 ps
peak current Ipe. 958 A 993 A
average DC current [y, 8.0 mA 8.2 mA

Table A.1: TTF/TESLA 500 beam parameter

8¢ L 18-DC cur'rent' i?F éurrént |
N envelope of ol v
ul Fourier components | 3
< i < |
E (TTF Injector 1) | ol
g 0t % 10}
§ 8 § 8|
| |
O a4l O a4l
2+ 2}
S 0 (C
0 10 20 30 40 50 60 70 8 90 100 o 1 2 3 J)) 1299 1300 1301
frequency [GHZ] frequency [MHZ]
Figure A.5:  Fourier spectrum of the TTF Injector II beam current with Gaussian-

distributed single bunches. The left plot shows the envelope of the spec-
tral components that are equally spaced at every 1 MHz. The right plot

shows the DC component and the component at the operating frequency
of 1.3 GHz.

vector diagram of Figure A.6. We only use the amplitudes of the complex quantities of
the beam current I, the cavity voltage V., the generator-induced voltage V, and the
beam-induced voltage V;. From the vector diagram, we obtain the relations

‘/cav = V:q COS(l/J -0 - ¢b) - % COSW - ¢b)
0 = Vysin(p—0—¢y) — Visin(y — )

To eliminate the terms with the angle (¢ — © — ¢,), we write

& Vycos(yp — © — ¢p)

% Sin(@b — @ — (,bb)

chcw + ‘/b 005(1/1 - ¢b)

Vi sin(y) — o)
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Figure A.6: Vector diagram of currents and voltages in the cavity due to beam and
generator.

Taking the square of these two equations and adding them yields

Ve = (Ve + Vocos(¥ — 60))” + (Vosin(¥ — r))”

VP = Vi, +2ViwVscos(y) — ¢p) + V7

V) = (Veawcost+ Vycos dy)” + (Veay sine + Vi sin )"
Replacing the generator and beam voltage

with V, = V;]T cos 1 = Vp.cosv
/2RLP [ 8
V,, = = Rpl, =2R.1
g ﬁ—i—l ﬂ—i—l L1y Lpo

Vor ? Vor ?
= Vicos®y = V2, cos’ (1 + - cos gbb) + V2, cos® (tan Y+ Vb sin gbb)
8/3 cav

9 ORI |
i, = (] o B

cav cav

— cav/@+1 ( 2RLIbO )2 ( 2RLIb0 . )2
P, = R, 85 1+ v cos ¢y ) + (tanvy + v sin ¢y,

cav

we obtain

In the special case of superconducting cavities, we can make the following approximation:

A
for g>1 : tany =~ QQL— = 2Qr— f

7 (equation (3.22))

This yields:

2 2
T I T I
= Py~ Vea ! 1+ M Ccos Py Af + <Q) @rh sin @, (A.27)
4 f1/2 Vcav
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with:
Ry =

DO |
/N
Q=

N——

QL (equation (3.2))

A.6 Cavity Differential Equation

A driven LCR circuit can be described in terms of the loaded @; by the differential
equation (3.16)
CU()RL .

5, 1)

twt

V(t) + @V( ) + waV(t) =

If the driving current is harmonic with time dependence e
tions from the slow amplitude changes.

, we separate the fast oscilla-

V(t) = (Vi(t) + iVi(t) - e
It) = (I(t) + iLi(t)) - ™"

Inserting this in the differential equation yields

(Vs +iV;) + 2iw(V, +iV;) — W (Vi +4V;) + S—O (Vi + Vi) + iw(V; + V7))
L
+wi (V; +14V;) = wolty (I, +1il;) + il R(Ir—i-ili)
Qr QL

Separating the differential equation in real and imaginary parts yields

. wo . 9 wwy 2 (,L)ORL . wowRL
real: Vi+ —V, = 2wV, —wV, — —V; +wyV, = I, — I;
QL QL Qr QL
. . wy . 9 9 wORL . wowRL
imag.: V;—i——V}—FQwV,—wV;—F—VT—FwVi: I; + I,
¢ Qs QT Qr
Multiplying the first equation with — ;- and the second with - gives
1. wy 1 wo Rr (wo ; )
—V; Vi +V, —w)Vi+ —V, = I; 1,
o +w2QL + +2 (wi — w?) +2QL 20, + wo
1~ w . 1 Wo Ry (wo
—Vr—— -Vr Vim — (w2 =)V, + —V, = ( I, IZ-)
2w w20, " T 5, (wo —w)Ve+ 20, "20, T

The second-order terms can be neglected as they are small compared with the others.
Furthermore, the resonance frequency is nearly equal to the RF frequency. Therefore, the
following approximation can be made:

W — W Wyt w
—(wp —w?) = . A wy—w=Aw
w 2w 2 w
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We end up with two first-order differential equations for real and imaginary parts.

. Ry /.
Vit — Vit AwVi+ -V, = I +wol,
QQL QL 2Q1, ( ° )
. Ry
Vi — VT—AWV}*F—OV% = I, + wol;
2Qr, 2Qr ~ag, (- +eh)
Multiplying the second equation by 262% and subtracting it from the first one:
Aw Wo Wy R < 1 . 1 )
V(14— ) +AwVi— Ve+ Vi— Vi= L + —1I, +wol, —wo——1; | ;
( 4QL) 20, "72Q, " 407" 20y 20,7 T2,

and adding the second equation to the first one multiplied by m%:

: Aw Wo W R ( . 1 . 1 )
Vi AwV,+ Vi+ Vi+ Vi=— -1+ ——1Li+wli+w—1I,) .
a 4QL) 2Q, ' 2Q, TAQE T 20, 2Q, " T T,
If we defined a by
1 4Q7
o=
1+ 4Q2 T 1+ 4Q?

the two previous equations will be written as:

. A 1/2 1. . 1
Vi + a(AwV; — ——V, + w10V, — Vi) = aRpw —Li+—IL+ 1, ——1
( "2Q 12 2Qr, 2 Lz <w0 wo2QL 2Qr )
V--I—a(—AwV—i—A Vi+ w10V + 1/QV) = aRpw —il.-i- ! — L+ 1+ ! —1,
7 T 2Q 1/2 2Q - LW1/2 W r (U()QQL QQL

. Wo
with wy/p = —
/2= 5 0.

These equations are represented in the state space formalism by:
divy _ al sor —Aw+ 50 .
i\ v Do~ 38— -
1 __1 L
+CYRLQJ1/2< 1 21QL>.<I7'>
2Qr L

1
wl/g W 1 d Ir
aR; L C—
" w()(—l 7> at \ I

This equation is an inhomogeneous matrix differential equation with inhomogenity func-

tion f(¢)
1 —-L I Ww1/2 L 1 d I
t) = aRiw 2QL>-<T>+ aR, 2 2@ — T
f(t) LW1/2 ( 2(‘,2% 1 I; wo -1 ZQLL dt \ I;
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Vi
the case of Qr > 1, w12 K wp and Aw < wp, we obtain the approximation

(1)~ 2001+ (M a2 )
A.7 Open Loop Transfer Function of the Digital RF
Feedback System

The solution for V(t) = Ve ) is defined on intervalls with continuous function f(¢). In

After simplification of the system, the transfer matrix of the continuous system is given by:

Heont(8) & Hey(s) = Ha(s) + H%ﬁ(s)

in which the transfer matrices for the two modes are:

(w1/2)7r s+ (w1/2)7r —Awy
-mod H,
mmode  Hr(s) AZ+(s+ Wi)n)2 \ Awr s+ (i)
8 (wWiy2)gn s+ (wi/2)er —Aws,
—m-mode H - i ° ° .
gmmede  Hy(s) AWl + (s + (wi/2)s,)? < Aws, s+ (wi2)sq
9

The discretization of the system is represented by the transfer matrices in the z-space
H,(z) and H%W(z):

me) = (1-2) Z{H”S(S)}:z;1 .Z{E—J{st(s)}

Hs.(2) = - (1— %) Z{H%Z(s)} - Z;1 .z{cf {H%:(S)}

The result of the transformation gives:

Ho(z) = (@1/2)x <(w1/2)7r —Aww>

Aw% + (w1/2)72r Awﬂ' (w1/2)7r
_ (w1/2)ﬂ- ) Z — 1
Aw? + (wij2)2 22 — 2zeW@1/2)7Ts . cos(Aw, T,) + e2@/2)xTs

. _ olw1y2)aTs . . (wl/Q)ﬂ’ _Awﬂ'
{ (Z e\t/ COS(AwnTs)) ( Aw, (w1/2)7r >

e s (g G ) )
—\W1i/2)rn T
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w o 8 —-A 8
Hs (2) = - i) . (Wﬂw wgw>

Aws + (w1 Aws,  (wiy2)s,
9
N (w1/2)g7r z—1
Aw?
9

B Ak L -cos(Aws, T;) + e2w1/2)xTs

w s sw -A S

Aws, (w1/2)g7r

‘ Au)§7r (w1/2)§7r
. S]n(Awngs) . ( —(wl/Z)%ﬂ' ACL)SQ

§7T

("-’1/2) Ts
—€

Enr

and Hdis(z) = HW(Z) + H%ﬂ(z).

A.8 Solution of the First-Order Differential Equation

The solution of the first-order differential equation

AG(t) = = (Aw(t) — Awr) = K - B2 (1)

is calculated for the time-dependent accelerating field shown in Figure 6.6. For the three
different time ranges, the accelerating field is given by:

El (1 — e_t/'rctrl)

0 <1 <ty
Eacc(t) = EO tz'nj <t< toff
EO . 6_(t_t0ff)/7cav toff S t

where Ey = Ey(1 — e tini/Tetrt),
The corresponding solutions are
1) 0 <t <ty :

Nutglt) = Awp 2K {1~ 2Tt g T/

Tetrl — Tm Tetrl — 2Tm
- Tetrl Tetrl
+27rKE12-ef/Tm-{1—2 =+ —=
Tetrl — Tm Tetrl — 2Tm

where 7., has to be different from 7,,, and 27,
2) tm]‘ S t S toff :

Aw@ (t) = A(«‘-)T + (A(AJ@(tm]) - A(,UT> . e_(t_tinj)/Tm

—27TKE§ + 27TKE§ . e~ (t=ting)/Tm
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3) toff St:

Aw©(t) = Awr+ (Aw@(tOff) - ACUT) e (t=toss)/Tm

—2rKE2 + 2nKE2— . {32(tt0ff)/’rcav _ e(ttoff)/vm}
Teav — 27—m

where 7.4, has to be different from 27,
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