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Abstract

Free Electron Lasers (FEL) operating in the X-ray wavelength range are a current field
of research in physics. They will lead to a tremendous gain in insight of various science
disciplines, e.g. material science, biology or chemistry.
The FELs coherent radiation is produced using linear accelerator structures to increase the
energy of electrons by the interaction with electromagnetic radio frequency (RF) fields. At
the German Electron Synchrotron (DESY), an FEL is already operating in the ultraviolett
wavelength range. The “quality” of the emitted radiation critically depends on the stability
of the RF-fields, which are so far controlled in amplitude and phase by a decentralized P-
controller. The severe control objectives needed for the emission of coherent X-ray radiation
are not satisfied yet.
In this thesis models for the linear accelerator system at DESY have been developed with
respect to the application of high performance RF-field controller synthesis methods. The
first steps have been the analysis and parameter estimation for an existing LPV state space
model. Moreover, two kinds of LTI models have been developed using a system identifi-
cation approach: A state space model structure with an additional, estimated parameter
disturbance input and two MIMO state space models.
On the basis of the obtained models a first design approach to a multivariable dynamic
controller has been made using nonlinear controller design methods.
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Chapter 1

Introduction

One important aspect of various natural sciences is the structural investigation of matter.
In physics structural and electronic properties of matter are an intense field of research
while in biology atoms and molecules incorporated in large biomolecular complexes shall be
studied more intensively. Chemists dream of a way of being able to visualize the dynamical
behaviour of electrons forming chemical bonds and thus “film” a chemical reaction. All
these research activities need a light source that is able to resolve objects on an atomic
level.

The wavelengths of X-ray radiation are in the range of the diameter of an atom (10−10m
or equally 1Å) such that X-ray radiation is suitable for the desired experiments. However,
conventional X-ray sources can not provide X-ray pulses with a sufficiently short pulse
length. This has the effect that single biomolecules are destroyed by the highly energetic
radiation as well as the pulse lengths being too long to resolve the fast dynamical processes
of a chemical reaction. Moreover, the resolution of conventionally1 produced X-ray radiation
is limited by the broadness of its spectrum. Laser light on the other hand, which is used
for a variety of optical experiments, can be optimally focussed compared with other light
and very short laser pulses can be produced.

The physician Emilio Segrè formulated in 1980: In the 1920’s we used to joke that good
physicists, once passed to their heavenly rewards, would find (an) apparatus in paradise
which, with a twist of knobs, would give electromagnetic radiation of any desired frequency,
intensity, polarisation, and direction of propagation, [21]. The properties desired for the
radiation are mainly properties of laser light (see section 2.1.1), however conventional lasers
operate in the wavelength range of visible light and in the infrared and ultraviolett spectrum.
If it would be possible to produce laser light with a wavelength in the X-ray range all the
prospected experiments mentioned above could be done. Thus, with such a light source a
tremendous gain in insight in various disciplines of science would be expectable.

A current field of research in particle accelerator physics are Free Electron Lasers (FELs),

1For example by an X-ray vacuum tube.
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which produce radiation with the properties of laser radiation but with tuneable wavelength.
In section 2.1.1 it will be explained, how a free electron laser works and how it is possible
to lower the wavelength of its radiation such that it reaches the X-ray range.

Figure 1.1: Structure of a free electron laser

At the German Electron Synchrotron (DESY) in Hamburg a european research project is
conducted called XFEL - X-ray Free Electron Laser. This project will be described in sec-
tion 2.1.2. The goal the XFEL-project is to realize an Free Electron Laser (FEL) operating
in the X-ray wavelength range. At DESY an FEL is already operating in the ultraviolett
wavelength range, the VUV-FEL - Vacuum ultraviolett FEL. For the realization of an FEL
a linear accelerator is needed, which increases the energy of loaded particles, electrons in
this case, by the interaction with electromagnetic radio frequency fields (RF-fields). The
emission of the X-ray radiation crucially depends on the stability of the electromagnetic
fields in the accelerator. For the stabilization of the fields a control system is used. The
control objectives, i.e. the specifications for the fields quality that must be met by the
control system for the XFEL to work properly, are introduced in section 2.2.7.

In the framework of the control objectives formulated for the XFEL-project this thesis is
an approach to the development of a new control control strategy for the electromagnetic
fields of the FEL’s linear accelerator system. The goal of the thesis presented in the next
subsection mainly involves the modelling of the linear accelerator system operating at DESY
such that model based high performance field controllers can be designed.

A first RF-field control objective formulation for the XFEL-project

Figure 1.1 shows the structure of an FEL. For the emission of coherent radiation it is
required to increase the energy of electrons by a linear accelerator consisting of resonators
housed in cryomodules. In chapter 2 detailled explanations on linear accelerators will be
given. The properties coherence and brilliance of the radiation produced by an FEL depend
mainly on the energy spread of the electron beam. The energy spread has to be low in order
to achieve the SASE effect described in section 2.3. Energy gain of the electrons in the linear
accelerator is caused by the interaction of the electrons with oscillating electromagnetical
RF-fields. To clearly formulate the control objectives for the RF-field stability the linear
accelerator system has to be explained in detail, which will be done in chapter 2.2. Here, a
first formulation is given to illustrate the objectives severity in order to formulate the goal
of this thesis.

The linear accelerator at DESY is operated in pulsed mode, i.e. the RF-fields inside the
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Figure 1.2: Timing structure of an RF-pulse in the superconducting cavities of TTF2
(numerical values are only exemplary)

accelerators superconducting cavities are supplied by an actuator system for a finite time
interval and then turned off again iteratively. A reason for the operation in pulsed mode is
less required cooling power of the cryogenic system. The timing structure of an RF-pulse
is shown in Figure 1.2. In this figure the RF-field amplitude, which is also called gradient,
is displayed as a function of time. The field builds up inside the accelerator’s cavities and
once the required gradient for appropriate energy gain of the electrons is reached it has to
be kept constant. During this so called flat top phase the electron beam is injected into the
accelerator. When the electron beam has passed, the RF-field is turned off and the field
amplitude decays.

The oscillating RF-fields must be kept constant in amplitude and phase during the flat
top time interval to transfer a precise amount of energy to the electrons. A more detailed
explanation will be given in chapter 2.2. The control-objectives regarding the necessary
RF-field stability for the XFEL are specified as follows:

• The field amplitude must be kept constant with a precision of 0.01% of the reference
value.

• The field phase may not differ from the reference value by more than 0.01◦.

Goal of the thesis

The focus of this thesis is the first module (ACC1) of the accelerator section of the VUV-FEL
at DESY’s TESLA Test Facility 2 (TTF2). Fullfilling the control objectives presented in
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the previous section is crucial for the success of the XFEL-Project. Compared with control
objectives for industrial applications the required amplitude and phase precision are very
severe. Moreover, the degree of complexity of the plant, i.e. the system to be controlled,
is very high. The complexity results from a variety of different electronical, electrical and
mechanical components which are spatially distributed over a wide range. The system is
highly susceptible to various kinds of disturbances affecting the operation and the RF-fields
inside the superconducting cavities in particular. Up to now, a decentralized proportional
feedback is used for the control of the RF-fields.

Steps towards achieving the control objectives can be done by improving hardware com-
ponents and designing high performance RF-field controllers. The design or synthesis of
these controllers is model based. This means a mathematical model of the input/output
(I/O) behaviour of the plant to be controlled must be developed because its properties
influence the structure and parametrization of the high performance controller. Modelling
of TTF2 so far has been done using first principles, i.e. equations based on physical laws.
For the superconducting cavities in particular, a model consisting of two linear time varying
differential equations has been developed using analogies to an electrical resonant circuit.

The main goal of this thesis is to derive models of the RF-field behaviour in the first module
(called ACC1) of the linear accelerator system containing 8 superconducting cavities. The
mathematical models must be suitable for high performance controller synthesis which
means that the model must be able to accurately predict the I/O behaviour for a specified
set of operating points if the same input signals are applied to the model and the real
system. The term “accurate” refers to minimal deviations of model output signals from
measured output signals and the deviations should be of the order of magnitude of the
required control accuracy.

The goals of the thesis can be summarized to:

• Analysis and simulation of the existing resonant circuit model: It must be clarified
whether the model is suitable for high performance controller design. Therefore it
must be tested, how accurate the model structure predicts the systems I/O behaviour.
Parameter estimation should be used to reduce the influence of not exactly known
parameters on the model performance

• System identification of the accelerator section ACC1: With this experimental based
way of modelling, the I/O behaviour of the accelerator system consisting of an actu-
ator system and eight superconducting cavities should be modelled. Models must be
developed for the large signal I/O behaviour during the RF-pulse as well as the small
signal I/O behaviour during the flat top. For modelling the influence of the beam is
not to be taken into account and a correct calibration of the system is assumed.

• A first approach on multivariable controller design: On the basis of a suitable de-
veloped model that describes the I/O behaviour of ACC1 during the RF-pulse it
should be clarified if a multivariable controller can improve the performance of the
RF-fields. Especially achievement of asymptotic tracking of the reference value and
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low overshoot at the beginning of the flat top must be in the focus of the design. For
the controller design actuator constraints shall be taken into account. The controllers
must be designed with respect to applicability in a new FPGA based signal processing
system.

Outline of the thesis

In chapter 2 principles of free electron lasers (FELs) and the XFEL-project at DESY will
be presented as well as an overview of the linear accelerator system. The frequency control
system for the stabilization of the RF-fields inside the linear accelerator’s superconducting
cavities will be described in the coverage necessary for the modelling and controller design
presented this thesis. With this fundamentals presented, the control objectives will be
precisely formulated.

Chapter 3 starts with an overview of most commonly used model structures for linear time
invariant (LTI) and linear paramater varying (LPV) systems. Then two kinds of model
building procedures will be illustrated: Modelling by first principles, e.g. physical insight
into the system behaviour, and system identification, an experimental based way to obtain
a mathematical model of the behaviour of a dynamical system. The theoretical framework
for modelling by system identification will be given.

The modelling of the first linear accelerator section (ACC1) will be presented in chapter 4.
An approach to model the accelerator system and the superconducting cavities in particular
by using analogies to an electrical resonant circuit will be presented on the basis of [20].
The model will be analyzed by means of systems theory. Furthermore, the performance of
the resonant circuit model will be tested by comparing measurement data with output data
of a simulation model based on the obtained model structure which will be parametrized
using parameter estimation methods.

Chapter 5 describes system identification of the RF-system of ACC1. By this modelling
approach it shall be tested whether more accurate models for specified operating conditions
of the system can be developed. The experiments performed at TTF2 and a first analysis
of measurement data are presented. Two different model structures are parametrized on
the basis of the data recorded during the system identification experiments at TTF2. Both
model structures are linear time invariant models, in one model structure a parameter
disturbance input is incorporated while the other model structure is a multivariable state
space model without an additional input signal. Models for the large signal behaviour of
ACC1 at TTF2 are presented that describe the system behaviour during the whole RF-pulse
time interval as well as a small signal model that describes the behaviour of the RF-fields
during the flat top. The models are validated, analyzed and the large signal models are
compared to the resonant circuit model.

A first approach of multivariable controller design for the section ACC1 of the linear accel-
erator is described in chapter 6. The controller structure has been chosen under considera-
tion of applicability in an FPGA system that will be implemented for signal processing at
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TTF2. Different multivariable controllers are presented and their RF-field performance is
compared.

The conclusions and an outlook on future work will be given in chapter 7. The results
of this thesis provide a basis for the application of further controller synthesis methods in
order to take steps to fulfilling the control objectives necessary for the XFEL-project to be
successfull.

In Appendix A a mathematical tool needed for system identification is explained, the singu-
lar value decomposition. Appendix B contains diagrams regarding the system identification
of ACC1. Further aspects of system theoretical analysis of the developed small signal model
of ACC1 are presented in Appendix C and Appendix D contains diagrams to illustrate the
performance in simulation of designed multivariable controllers.
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Chapter 2

Radio frequency system of the linear
accelerator

The pre-step of modelling the first module of the TTF2 linear accelerator system is to get an
insight into its operating principles and its components. In this chapter, first a motivation
is given where the principles of free electron lasers are explained and the XFEL-project at
DESY is presented (section 2.1). The accelerator system, its components and the function
of the superconducting cavities in particular is presented in Section 2.2. Then in Section
2.2.2 the focus is put on the Low Level Radio Frequency (LLRF) control system that is
used to stabilize the RF-fields in amplitude and phase. In particular the actuator system
and the signal processing of the LLRF system is presented.

In Section 2.2.4 the main calibration parameters are described and some consequences are
discussed the calibration has for control of the system. In Section 2.2.5 disturbance sources
are presented that lead to corruption of the RF-field performance such that their effects on
the RF-fields have to be compensated by the control system. The current structure of the
LLRF control system is illustrated in Section 2.2.6. In Section 2.2.7 the controller param-
eters are formulated precisely with respect to the technical background layed previously in
this chapter. Section 2.2.8 gives an idea about actuator constraints.

It shall be emphasized that the highly complex accelerator system is presented only in its
basic principles such that a framework for understanding issues relevant for the modelling
process of the I/O behaviour is given.
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2.1 Motivation

2.1.1 Principles of Free Electron Lasers (FEL)

Before the operating principles of FELs are presented a brief illustration about conventional
lasers and the properties of laser radiation is given. It will become clear that various aspects
of the radiation production in an FEL are very similar to conventional laser sources like
Helium-Neon lasers.

Laser radiation and conventional lasers

Laser radiation is used for various optical applications in scientific as well as industrial
contexts. The term laser stands for “Light Amplification by Stimulated Emission”. In
conventional lasers, the radiation is emitted by electron transitions in atoms of certain
materials, e.g. Helium and Neon (He-Ne). In a He-Ne laser electrons are transferred to a
higher energy state by so called “pumping”, e.g. applying energy to the atoms for example
by light. After this transition the electron falls back to the lower energy level to minimize the
energy level of the atom. During the transitions from upper to lower energy levels a photon
is emitted whose amount of energy is exactly the difference between both energy states
of the electron. Spontaneous Emission of photons occurs without excitation by pumping
due to zero point fluctuations which is quantum-mechanically explained by the uncertainty
principle, [6].

The pumping is used to create an electron population inversion, i.e. more alectrons are
at the higher energy level compared to the lower level. Due to this inversion Stimulated
Emission, which is caused by emitted photons, occurs and outweighs the spontaneous emis-
sion. Since the electron transition in this case is forced by an electromagnetic wave, the
emitted photon1 during the transition adds in phase to the incoming wave, has the same
polarization and travels in the same direction, [22]. In order to increase amplification, a
resonator is used that reflects the emitted radiation such that the emitted photons pass the
gain medium multiple times. Usually mirrors are used to construct resonators for lasers in
the visible wavelength range.

The properties of laser radiation should only briefly be mentioned here, detailed explana-
tions of the following terms are given in [6]. Laser radiation has the following properties:

• It is monochromatic, i.e. it has a very narrowbanded spectrum resulting from the
resonator arrangement where oscillation can only occur at the resonance frequency of
the resonator.

• The emitted electromagnetic waves have a fixed temporal and spatial phase relation,
i.e. the radiation is coherent.

1electromagnetic waves and photons are related by the wave-particle-duality (see [17] for details)
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• A laser beam possesses optimal collimation compared to other radiation sources, i.e.
an emitted laser beam hardly widens in diameter when travelling through space or
passing an optical aperture.

• The brightness of laser sources is very high. It is defined as the power emitted per
unit surface area per unit solid angle. Thus very high peak intensities in the focal
plane of the laser can be achieved.

• The pulse duration of lasers can be very short (∼ 10−14s for semiconductor lasers,
[22])

Free electron lasers (FEL)

In conventional lasers the electrons are bound to atoms. This implies that usually only
radiation with fixed wavelenght can be emitted because of the discrete energy states in the
atom’s structure. In a FEL on the contrary, the electrons are free and thus the emitted
wavelength is tuneable because the energy of the emitted photons depends on the electrons’
energy decay that can be nearly arbitrary for free electrons. The theoretical background
of the FEL principle has been developed by John M.J. Madey in 1971. The first FEL has
been realized at the Stanford University in 1977.

Time

Length

30 - 800 s:

~300 m1 mm

Electron Beam

1 s: 0.1 - 1 s

Bunch

Figure 2.1: Temporal and spatial dimension of the pulsed electron beam

An FEL is considered a vacuum tube device: Its principle of operation is based on the
interaction of an electron beam with radiation in vacuum, [19]. The basic structure of a
FEL is shown in Figure 1.1. An electron gun emits a pulse train of electron clouds, so
called bunches (see figure 2.1). The electrons are injected into a linear accelerator. The
bunches enter the accelerator already with nearly the speed of light such that one bunch
passes the whole accelerator structure before the next bunch is emitted a microsecond later.
Technical aspects of linear accelerators will be discussed in chapter 2.2. Basically, the energy
of the electrons is increased by the interaction with electromagnetic radio frequency fields
(RF-fields) which are oscillating in superconducting resonator structures called cavities (see
Figure 2.2). Because superconductivity can only occur at low temperature the cavities are
housed in Helium cooled cryomodules. In the linear accelerator structure the electrons
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are modulated in energy by bunch compressors. A simplified vivid explanation for this
compression process is that slow electrons are accelerated and fast electrons are decelerated
such that all microbunches have the same energy.

Figure 2.2: Visualization of RF-fields accelerating a particle in superconducting 9-cell cav-
ities of the linear accelerator, [29]

After having passed the accelerator structure the electron beam is guided by beam optic
systems called collimators into arrays of magnets called undulators. These magnets are
arranged such that the electrons are forced onto sinusoidal (so called planar undulators) or
helix shaped (so called helical undulators) trajectories. By the acceleration caused by the
change of direction the electrons emit radiation pulses whose wavelength depends on the
energy of the electron beam. Therefore the wavelength is tuneable by the field strength of
the RF-fields in the linear accelerator. The SASE effect, which is explained in more detail
in the next section, causes the electrons to emit their radiation synchronously. This leads
to radiation that has the same properties like laser radiation. At the end of the undulators,
the electrons are deflected by magnets into an electron trap. The emitted radiation is not
affected by these magnets and travels further into an experimental area.

The properties of the emitted radiation by the X-ray FEL are specified for the year 2012
and include a wavelength of λXFEL = 10−10 m = 1Å and a pulse duration for each radiation
pulse of Tp = 10−13s. The brilliance of the coherent X-ray radiation is about factor 104

higher than that of conventional X-ray sources. With a wavelength in the Ångstrom range
it becomes possible to optically inspect atoms because their radius is of the same order of
magnitude.
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SASE principle

Figure 2.3: SASE principle and exponential increase of radiation power by electron mi-
crobunching

When the electron bunches enter the undulators, all electrons have the same energy. The
electrons emit radition due to their acceleration by the no longer linear direction of motion.
However, the electrons interact with the emitted radioation such that some the electrons
receive energy of the radiation and other electrons submit energy to the radiation.

Thus, it comes to an effect called microbunching: The electrons formate spatially to groups
where an energy exchange is no longer possible. The reason for this is that the energy of
the electrons and the undulator period, i.e. the period the electrons’ sinusoidal or helix
shaped trajectory, are matched such that a resonance condition (see [1]) is fullfilled2. Elec-
trons receiving energy of the radiation are accelerated and electrons submitting energy are
decelerated until they have formed microbunches. Physically speaking microbunching is a
longitudinal charge density modulation of the electrons, [18].

Due to microbunching the electrons emit radiation synchronously and the already emitted
radiation is amplified. This effect is called Self Amplified Spontaneous Emission (SASE).
The radiation’s electromagnetic waves have a defined phase relation because of the emis-
sion’s synchronicity in time and space leading to coherence. The radiation power in the
undulator grows exponentially with length because more and more electrons are ordered
longitudinally in the undulator with increasing distance from the undulator entrance, [1].

2This resonance can be compared to the effect of the resonator structure at conventional lasers where
mirrors are used to superimpose the laser light.
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The phenomenon is in physical terms also called a “collective instability”. The principle of
the SASE effect and the exponential power increase is shown in Figure 2.3.

2.1.2 The DESY XFEL-Project

The XFEL-project is a european joint venture project to be realized at the Helmholtz
facility DESY in Hamburg, Germany. Participating countries are France, Germany, Greece,
Italy, Poland, Spain, Sweden, the United Kingdom and Switzerland. It is planned to
construct an X-ray FEL using a 2.6km long linear accelerator. This extremely brilliant
FEL light source should start operation in 2012. For the XFEL project synergy effects
with the project TESLA - Tera Electron Volt Superconducting Linear Accelerator will be
used, which besides supplying the electron beam for the XFEL should be operated as an
electron-positron collider. The accelerators total energy is initially specified as 500GeV and
will be extendable to 800GeV.

From 1992 to 2003 the fundamentals for free electron lasers operating in the X-ray wave-
length range have been layed at the TESLA Test Facility (TTF) at DESY. At TTF, inital
FEL experiments have shown that the challenging goals of the XFEL-project can be met.
Now TTF has evolved to the next state (TTF2). At TTF2 an FEL is already operating
in the ultraviolett wavelength range (λFEL = 30nm), the so called VUV-FEL - Vacuum
Ultraviolett FEL. With the VUV-FEL, which is an about 300m long structure, coherent
radiation with a wavelength less than λFEL = 30 nm has been produced. Gaining insight
in the FEL technology with respect to the achievement of lower wavelength at TTF2 is the
basis for the realization of the XFEL.

2.2 Linear accelerator

In the current construction state the linear accelerator at TTF2 is about 260m long. The
acceleration of electrons is realized by superconducting Niobium cavities which are res-
onators for the RF-fields (see Figure 2.2). The acceleration process is further described
in Section 2.2.1. The cavities are evacuated such that the accelerated electrons do not
collide with air molecules. To enable the Niobium’s superconductivity the cavities must be
cooled to a temperature of −271◦C. Superconductivity of the cavity walls leads to very low
electrical energy dissipation and therefore lower temperature increase of the cavity walls
compared to normalconducting cavities. Moreover, the cells of the cavities can be designed
bigger which is an advantage because the influence of disturbance waves occuring when an
electron bunch passes the RF-fields in the cell is reduced, [29]. The cavity walls have a low
thickness of about 2.8mm to reduce the still present energy dissipation because of a finite
electrical resistance. The thin walls however make the resonator structure susceptible to
mechanical disturbances (see Section 2.2.5).

At TTF2 eight cavities are housed in each cryomodule, which is a cooling structure with
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Figure 2.4: Assembly of a cryomodule at TTF2, DESY

pipelines of liquid Helium. In total six cryomodules are assembled at TTF2 such that
the total number of cavities is 48, however in the current state only 40 cavities, i.e. five
modules, are in operation. The system section in focus of this thesis is the first accelerator
cryomodule, which will be abbreviated ACC1. During operation of the accelerator access
to the tunnel is prohibited because of radiation emission on the one hand and because of
magnets with high fieldstrength and high currents (> 200A) on the other hand.

2.2.1 Accelerating principle in superconducting cavities

The superconducting nine-cell cavities have nine electrical resonance modes (schematically
shown in Figure 2.5). For the operation of TTF2 the cavities are driven in the so-called
π-mode which is also called TM10 mode and has a resonance frequency of 1.3GHz. The
bandwidth of the cavity is very narrow (ω1/2 = 2π · 216.7 rad/s) and the unloaded quality
factor, which is a measure for the “sharpness” of the resonance peak, is very high (in the
range of Q0 = 1010). These terms will be explained in detail in Chapter 4.

Driving the cavity in the π-mode means that the electromagnetic RF-waves with a frequency
of 1.3 GHz form a standing wave inside the nine cavity cells and the fields in adjacent cells
have a phase difference of φ = π rad = 180◦. The task of the RF-fields is to supply energy
to the electron bunches of the electron beam by interaction. A very important point is that
the electrons are already relativistic, i.e. they nearly travel with the speed c of light. when
they enter the linear accelerator. In the acceleration process the energy of the electrons is
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Figure 2.5: Electrical resonance modes of superconducting 9-cell cavities at TTF2, [20]

increased and the relativistic γ defined as

γ =
1√

1− v2

c2

increases when the magnitude of the electrons’ velocity v asymptotically approaches c, [23].

The resonance frequency of the π-mode has been specified in the cavity design such that
an electron bunch takes exactly half the resonance period of that mode to move from one
cell to the next. In this time the field vector of the RF-field in the next cell has turned
by 180◦. If the injection time of the beam is adequately synchronized with the RF-fields,
the electrons encounter in each cell an RF-field vector directed in the same direction as
the cavity velocity vector v. Therefore, the electrons are accelerated in the sense that they
receive energy by the RF-fields. This process is shown in Figure 2.6.
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Figure 2.6: Acceleration principle of cavities driven in π-mode

2.2.2 System structure

Figure 2.7 shows one part, an RF-station. of the linear accelerator as planned for the XFEL
and its so-called Low Level Radio Frequency (LLRF) control system. The LLRF control
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system has the task to stabilize the pulsed RF-fields in the superconducting cavities of the
RF-station during the flat top phase of one RF-pulse (see Figure 1.2).

Figure 2.7: Scheme of the Low Level RF control system of one RF-station (here the planned
scheme for the XFEL is shown, where one RF-station contains up to four cryomodules, i.e.
32 cavities)

A klystron, which is basically an amplifier for RF-waves (see Section 2.2.3), supplies the
RF-fields for the number of cavities included in the RF-station. For the XFEL-project it
is planned that one klystron supplies up to four cryomodules, each housing 8 cavities. At
TTF2 however, one RF-station contains only up to two cryomodules, i.e. 16 cavities. The
RF-station ACC1 of TTF2 which is focussed in this thesis contains eight cavities. The
block diagram of ACC1 is shown in Figure 2.8. All signals are represented by means of
their real and imaginary part3. The signal names are classified as follows:

• Input signals ur,ui: The sum of the control signals resembling the input signals of the
actuator system, the vector modulator in particular.

• Output signals yr,yi: The real and imaginary part of the RF-field voltage vectors’ sum
of eight cavities. The vector sum signal is also called Vr and Vi.

• Reference signals rr,ri: The reference signals are given by tables in the signal pro-
cessing system and specify the reference trajectories of the real and imaginary part of
the vector sum of the RF-field’s voltage vectors during an RF-pulse for the specified
field gradient.

3In radio frequency theory and at DESY the real part of an RF-signal is also called in-phase signal(I)
and the imaginary part quadrature signal (Q). To avoid confusion, in this thesis the complex signals are
denoted in real and imaginary part.
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Figure 2.8: Block diagram of ACC1

• Feedforward signals fr,fi: The system is driven by the field forward signals that mark
the input signals (ur and ui) in openloop.

• Control signals uc,r,uc,i: The feedback controller’s output signals which are superim-
posed on the feedforward signals.

• Electron beam current Ib,r,Ib,i: Real and imaginary part of the electron beam current
(see Chapter 4).

• Control error signals er,ei: Deviations in real and imaginary part of the output signals
from the reference signals.

2.2.3 Actuator system

The 1.3GHz RF-fields oscillating in the cavities are supplied by the actuator system con-
sisting of a vector modulator (VM) and a klystron. This actuator system receives a stable
RF-signal of 1.3 GHz from the master oscillator (MO). This low power sinusoidal signal
can be changed by the vector modulator in amplitude and phase. The output signal of the
vectormodulator is amplified by a klystron, which is a radio frequency amplifier. A klystron
consists of resonator structures for RF-waves as well. The term LLRF-control system thus
denotes that the RF-fields are modulated in amplitude and phase on the low power side of
the system before they are amplified and guided into the cavities by a transmission system.
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The amplified RF-waves are transferred from the klystron to the cavities inside the cry-
omodules via a transmission system. The cable structures of this system are also called
waveguides. Via couplers which are the connection between the waveguide and the cavity
the RF-waves are injected into the cavities where they form a standing wave structure.
The sinusoidal oscillation of a standing electromagnetic wave with a fixed frequency ω can
be described by means of amplitude and phase or in the complex plane by the real and
imaginary part of the field vector rotating with ω, [30].

Inside each cavity an antenna is assembled to measure the real and imaginary component
of the RF-field vector oscillation. This measurement signal is transmitted to a digital
signal processing (DSP) system. Signal processing of the masurement signals is described
in Section 2.2.4.

Vector sum output signals

A very important point is that for economical reasons one high power klystron supplies all
cavities of an RF-station with RF-fields: Providing a separate klystron for each cavity would
be very expensive. The result is that it is not possible with this actuator system to influence
the RF-fields real and imaginary parts (or amplitudes and phases respectively) in each cavity
separately. Hence, the system is called underactuated. Therefore, the measurement signals
of real and imaginary parts of all cavities contained in the RF-station are added in the DSP
such that the real and imaginary part of the vector sum of the complex cavity field vectors
are the variables to be controlled.

Dynamical behaviour of the actuating system

With respect to the operating frequency fres = 1.3GHz the vector modulator can be mod-
elled as a first order low pass with a corner frequency of fvm = 10MHz. The klystron is a
high power RF-amplifier that can be considered as well as a first order lowpass filter with
a corner frequency of fkly = 8MHz. The bandwidths of both actuator elements are very
large compared to the narrow cavity bandwidth ω1/2 = 2π · 216.7rad/s, and the dynamical
behaviour of the accelerator system is neglectable in the frequency range considered (up to
100kHz) for control.

2.2.4 Measuring system

Downconversion and signal processing

The frequency of the RF-fields measured in each resonator is 1.3GHz. The LLRF system
is a digital control system, i.e. all signals in the DSP involved in the control algorithm
(measurement signals that are read in, control signals for the actuator system that are
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written out of the DSP etc.) are processed at discrete time instants. The interval between
those time instants is called the sampling time (see Chapter 3.1 for details).

Since it is impracticable to sample the highfrequent RF-fields for measurement directly, the
1.3GHz oscillation is downconverted to an intermediate frequency of 250kHz. This means
that the signal is transformed to a signal with lower frequency by mixing it with a higher
frequent signal of a so-called Local Oscillator (LO) and applying low pass filtering, [20]. To
illustrate this, two sinusoidal signals are assumed:

VRF (t) = V̂RF · sin(ωRF t+ ϕRF ) , VLO(t) = V̂LO · sin(ωLOt+ ϕLO)

The numerical values for the frequencies in this case are ωRF = 2π · 1.3 · 109rad/s and
ωRF = 2π ·1.30025 ·109rad/s. An ideal RF mixer operates as a multiplicator of two signals.
Therefore, the output (intermediate signal) of the RF mixer for these two input signals is

VIF (t) = 1
2

V̂RF V̂LO (cos ((ωLO − ωRF )t+ (ϕLO − ϕRF )))

− (cos ((ωLO + ωRF )t+ (ϕLO − ϕRF ))) .

If a low pass filter is applied to remove the high frequency component of VIF (t) a signal
V (t) remains with a frequency that is the difference frequency of the input signals:

V (t) = V̂ cos(ωIF t+ ∆ϕ)

with

V̂ (t) =
1

2
V̂RF V̂LO ,

ωIF = ωLO − ωRF ;

∆ϕ = ϕLO − ϕRF

The down-converted signal contains the information about amplitude and phase of the
RF-signal if the amplitude and phase of the local oscillator is constant with respect to a
master oscillator, [20]. In this case the intermediate frequency is ωIF = 2π · 2.5 · 105rad/s.
The intermediate signal is sampled with a sampling frequency of 1 MHz such that four
samples per period are obtaines and Shannon’s sampling theorem is fullfilled, (for further
details see [16]). The conversion of the measurement signals is realized by analog to digital
converters (ADCs) and the control signals for the vector modulator coming from the DSP
are converted by DACs respectively. Detailled data about the signal processing system can
be found in [20].

Calibration aspects

The measurement and control signals are transmitted by cables of different length which
have capacitances, inductances and resistances. Therefore, the signals entering the DSP are
modulated in amplitude and phase. For the control of the RF-fields it is however crucial
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to have “true” measurement signals, i.e. to know what the values of amplitude and phase
of the RF-fields inside the cavities are.

To compensate the modulations of the transmission system the measured RF-field vector
of each cavity j is multiplied with an individual matrix M j that implies a transformation
involving a rotation and scaling of the vector. By the rotation the phase change shall be
adjusted and by the scaling the amplitude change. This rotation and scaling matrix M cal

is denoted in Figure 2.7 as

M cal =

(
aj −bj
bj aj

)
; aj, bj ∈ R . (2.1)

Additional aspects of calibration involve a rotation of the measured vector sum itsself by an
angle called loop-phase and a normalization of the open loop steady state gain by a factor
called system gain:

• For physical reasons not further explained here the phase of the RF-fields’ “true”,
i.e. perfectly calibrated, vector sum is zero at the beginning of each RF-pulse. If the
measured vector sum differs at the beginning of the RF-pulse from zero, the vector
sum is rotated by the angle called loop-phase to adjust the phase shift and to ensure
that negative feedback is applied when the control loop is closed, [12].

• Each electrical component in the control loop has a static gain, i.e. an amplification
factor of the input signals. In Section 2.2.6 the currently used control algorithm
will be presented. The basic underlying control law is proportional feedback of the
control error. During the evolution of TTF2 (electronic-) components in the loop are
changed such that a different steady state gain of the open-loop system results. To
ensure comparability of feedback gains applied at different construction stages, the
open-loop steady state gain is normalized to one by multiplication with the system
gain factor.

For further details on calibration see [20] and [12].

Consequences of calibration for control

It should be mentioned that calibration errors can have fatal effects on the closed loop
system behaviour. An example is the loop phase that causes a rotation of the vector sum
before the actual control error is computed: In the worst case a wrong loop phase can
imply positive feedback of the control signal and thus an unstable closed loop system. At
the present state of operation the calibration of the TTF2 system is usually only performed
if major changes happened to the system, e.g. new components are installed. However,
effects like temperature drifts can also change the system behaviour and should be taken
into account for the calibration. Tools for online-calibration are developed at DESY and
are partially already used.
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For the model building the calibration of the focussed RF-station ACC1 of TTF2 has been
assumed to be optimal. This assumption is reasonable because measurements at TTF2
have been made immediately after a new calibration of the system was done.

2.2.5 Disturbance sources

A multitude of disturbances decrease the quality of the laser beam. Here the focus is put on
disturbances of the RF-fields inside the cavities. The cavities are resononators for standing
RF-waves and their resonance frequency is determined by their geometry: If the length of
the cavity changes, the resonance frequency changes as well. The problem is that due to
the relatively thin cavity walls for low electrical energy dissipation, the resonators become
susceptible for mechanical vibrations.

In Figure 2.5 the resonance modes of a cavity are shown. The quality factor Q (see Chapter
4) is defined as the quotient of resonance frequency and width of the resonance peak, which
is two times the bandwidth ω1/2 of the resonator

Q =
ωres

2ω1/2

. (2.2)

If the cavity is driven with a field gradient of 25MV/m at the resonance frequency of the
cavities π-mode, the cavity bandwidth is ω1/2 = 2π · 216.7rad/s, [20]. The loaded quality
factor (considering all energy losses while driving the cavity, see Chapter 4) is very high
QL ≈ 3 · 106 and thus the resonant peak of the π-mode is very “sharp”.

If the resonance frequency of the cavity’s π-mode changes due to changes of the cavity’s
shape caused by mechanical vibrations, more power is needed to drive the cavity with the
frequency of 1.3GHz. If this change in resonance frequency called detuning is in the order
of the cavity bandwidth ω1/2 the drive power increases by 25%. Two main disturbance
sources causing detuning are destinguished, Microphonics and Lorentz Force Detuning.

Microphonics

Mechanical vibrations caused by the accelerators environment are transferred by mechanical
mounts to the cavities. The sources for microphonics are:

• System inherent sources: The vacuum pumps or the helium pums of the cryogenic
system cause meachanical vibrations.

• Man-made: This can be vibrations caused by traffic or other human activity (some-
times also referred to as cultural noise) or machinery etc.

• Ground motions: Vibrations caused by seismic activities, ocean waves or elastic mo-
tion produced by the moon.
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The typical frequency range for microphonics is below 1kHz. Therefore, microphonics can
be considered a disturbance that only weakly influences the cavity fields during the 1.3ms
long RF-pulse but mainly influences the resonance frequency from RF-pulse to RF-pulse.
Microphonics can be considered as an uncorrelated disturbance.

Lorentz Force Detuning

The oscillating electromagnetic fields inside the cavities induce currents in the cavity walls.
These currents lead to Lorentz forces acting on the cavity walls and deforming the cavities.
The magnitude of the Lorentz forces is proportional to the square of the accelerating field
gradients such that Lorentz force detuning can be considered as a correlated disturbance.

The frequency range of Lorentz Force detuning ranges up to 10kHz. In [20] it has been pro-
posed that Lorentz force detuning can be considered repetitive from RF-pulse to RF-pulse.
This will be further investigated in the modelling process (see Chapter 4). Approaches for
modelling Lorentz force detuning are described in Chapter 4.2.

To reduce the effect of Lorentz force detuning two methods are used. The first is to stiffen
the cavity section in between the cells by stiffening rings, i.e. a passive method of vibration
reduction. The next method is still object of research. In [13] and [11] an approach to
actively compensate the vibrations by piezo-actuators mounted on the cavity structure is
proposed. The first experimental results with this active vibration control method have
been very promising but this method is so far not regularly applied at TTF2.

Besides these mechanical disturbances further disturbances must be taken into account.
These are noise produced by sensors and other electronic components, higher order electrical
resonant modes of the cavities etc. .

In this thesis the influence of the electron beam on the RF-fields has not been taken into
account. If this is done additional disturbances causing an energy spread like charge fluc-
tuations of the electron bunches emitted by the electron gun will have to be considered.

2.2.6 Vector sum control algorithm

The currently used control algorithm at the LLRF system, a combination of decentralized
proportional feedback and a feedforward component for both channels, is shown in Figure
2.9. Initially the vector sum signals are filtered by a digital low pass filter to remove
sensor noise of the signals. In the present configuration the corner frequency of this filter
is fLP = 220 kHz.

The reference values for real and imaginary parts of the vector sum are listed in tables
for each time step of the RF-pulse. These tables are scaled according to the specified
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accelerating field gradient for the flat top.

Figure 2.9: Currently used TTF2 control scheme for eight cavities

Proportional feedback

The currently used controller structure Cc is a decentralized proportional feedback. The
errors in real and imaginary part of the vectorsum are multiplied with the same gain and
no coupling between real input channel and imaginary output channel and vice versa are
included in the controller structure. The discrete time transfer function matrix (see 3.1) of
the digital P-controller has the following form

Cc(z) = Kp ·
(

1 0
0 1

)
. (2.3)

The controller structure will be discussed in more detail in chapter 6. In principle the
DSP system provides gain tables for real and imaginary parts, i.e. not only different gains
for both channels but also for different time steps can be used. However, so far no gain
scheduling techniques (see section 3.1.2) for control have been used.
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Feedforward tables

The feedforward signals are added on the output signal of the P-controller and are the input
signals of the TTF2 system in open loop. Their levels are listed in tables in the DSP system
and usually the signals are partwise constant for the phases filling, flat top and decay. A
different feedforward table is used for the channels of real and imaginary signal. Thus one
purpose of the feedforward tables is to provide the driving signals for the cavities such that
the shape of the field amplitude during the RF-pulse shown in Figure 1.2 is approached
even in open loop. Figure 2.10 shows controller output and feedforward signals in closed
loop. It can be seen that the dominating parts of the plant input signals are the feedforward
signals.
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Figure 2.10: Controller output signals (ur, ui) and feedforward signals (fr, fi)

Moreover, attempts have been made to use the feedforward to compensate for so-called beam
induced transients. Due to the acceleration of the electron beam, each electron bunch drains
energy from the RF-fields in the cavities thus leading to a decay in amplitude everytime an
electron bunch passes the cavity, which is called transient. Because the injection time of
the beam is fixed at the begining of the flat top interval these repetitive disturbances can
be compensated by use of feedforward control.

In [12] an approach is described to implement an adaptive feedforward algorithm that
compensates the beam induced transients more efficiently by changing the feedforward
tables iteratively in a learning fashion. However, this technique is not yet used regularly at
TTF2 and uses non standard adaptation laws.
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2.2.7 Control objectives for the XFEL

It has been shown in this chapter that the real and imaginary part of the vector sum of the
RF-fields are the variables to be controlled. This is an equivalent formulation for controlling
the vector sum in amplitude and phase. The real and imaginary parts of the feedforward
signals are the input signals of the open loop system.

For the interaction of the electron beam with the RF-fields the amplitude and phase stability
of the fields during the flat top phase of the RF-pulse is crucial (shown in Figure 1.2).
Recalling the acceleration principle it is obvious that in the worst case for a phase deviation
of 180◦ the electrons are maximally decelerated by the RF-fields4. In the formulation of
the control objectives for the control error, which is the maximal acceptable deviations in
amplitude and phase from the reference trajectories, the rms-error (root mean square error)
and the peak-to-peak error is specified. These terms shall be defined using amplitude and
phase for the description of the complex signals.

We define the reference trajectory for amplitude and phase as ra(t) and rϕ(t) and re-
spectively the vectorsum’s amplitude and phase signals as ya(t) and yϕ(t). The errors in
amplitude (ea(t)) and phase (ephi(t)) are then given by

ea(t) = ya(t)− ra(t) eϕ(t) = yϕ(t)− rϕ(t) . (2.4)

Considering ea,f (t) and eϕ,f(t) the error values for the Tf = 800µs samples long flat top
interval beginning at sample t0,f and respectively ra,f(t) and rϕ,f(t) the constant reference
values during this interval the peak-to-peak control error for the flat top interval is defined
as follows

ea,p2p =
|max(ea,f (t))−min(ea,f (t))|

|ra,f |
, eϕ,p2p =

|max(eϕ,f(t))−min(eϕ,f(t))|
|rϕ,f |

. (2.5)

The rms-error for the flat top interval is defined as

ea,rms =

√√√√ 1

Tf
·
∫ t0,f+Tf

t0
e2
adt , eϕ,rms =

√√√√ 1

Tf
·
∫ t0,f+Tf

t0
e2
ϕdt . (2.6)

The specified control objectives regarding the RF-field stability for the XFEL project to be
successful are the following:

4If on-crest acceleration is assumed, i.e. the injection of the electron is done when the phase difference
between RF-field vector and electron velocity vector is 0◦
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Control objectives for the XFEL’s RF-field stability of the vector sum:
During the flat top interval of each RF-pulse the control errors in amplitude and phase
of the vector sum must be within the following tolerances:

• Peak to peak amplitude precision: ea,p2p ≤ 0.1%.

RMS amplitude precision: ea,rms ≤ 0.01%.

• Peak to peak phase precision: eϕ,p2p ≤ 0.1◦.

RMS phase precision: eϕ,rms ≤ 0.01◦.

A further control objective not directly concerning the RF-fields is the minimization of the
RF-field driving power. Reducing the detuning e.g. by active vibration control with the
piezo actuators, which is a topic of research at TTF2, is one important aspect to deal with
the multiobjective goals.

The current status achieved with the decentralized proportional feedback and feedforward
is ea,p2p ≈ 0.5%, eϕ,p2p ≈ 1◦, ea,rms ≤ 0.1% and eϕ,rms ≈ 0.1◦. The control error must be
lowered by approximately one degree of magnitude to fullfill the control objectives for the
XFEL.

2.2.8 Actuator constraints

An issue that must be considered for high performance controller design are limitations
of the actuator system. Due to physical constraints on input and output signal levels of
the actuators the controller signals which are the input signals of the plant can not be
of arbitrary large magnitude. In case of TTF2 the main actuator constraint results from
limited klystron output power.

The values of the feedforward signals for each sampling instant are saved in tables contained
in the DSP system and are normalized such that their maximal value is one. These tables are
called feed forward reference tables. The tables are then automatically scaled depending
on the RF-field gradient specified for the vector sum of the accelerator module’s cavity
voltages. In Figure 2.11 the trajectories of the input signals ur and ui of the actuator
system are shown which resemble the feedforward signals (fr and fi) in openloop. They
have been generated by the feedforward reference tables by scaling such that a field gradient
of 14MV/m is obtained.

It has been experimentally found out that the real and imaginary parts of the closed loop
input signals of the actuator system can maximally have twice the maximal values of the
feedforward signals of the respective signal. The maximal values may only occur for ap-
proximately 2-4 samples. The “usual” values of the input signals should be in the level
range of the feedforward signals such that the rms-value of the feedback control signals
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Figure 2.11: Actuator constraints for a field gradient of 14MV/m

are low compared to the rms-values of feedforward control signals. A precise mathematical
formulation of actuator constraints is not possible because of lack of detailled technical
specifications for the actuators. The mentioned constraints have however been taken into
account for experiments at TTF2 in order not to damage the system.
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Chapter 3

Methods for modelling of system
dynamics

In general, a dynamic system can be described by its input/output (I/O) behaviour. A set
of time varying signals are considered as inputs of the system that cause internal variables
(states) to change. A subset of measured signals is considered as outputs. The purpose of
a model of the system is to describe the process inherent mapping from the input signals
onto the output signals.

In order to meet the severe control objectives for the field stability of the superconducting
cavities for the XFEL the VUV-FEL is constantly optimized technically. A part of this
evolution is planned to be the development of a more sophisticated controller than a pro-
portional feedback. Methods for the synthesis of high performance controllers are model
based. Unlike heuristic tuning methods used to obtain controller parameters e.g. with
only one characteristic response of the plant used as a model, the dynamics of the system’s
mathematical model are resembled in the high performance controller structure. As a result
it is necessary to develop an appropriate model of the low level RF system to be able to
make use of this methods. An overview on two analytical model structures (linear time
invariant models and linear parameter varying models) is given in section 3.1.

Of course, it is not possible to describe the behaviour of the real-life system by a model in all
details, i.e. for every operating condition. Therefore one has to focus on a set of situations
that should be described by the model. Examples for constraints resulting from special
situations are frequency ranges or levels of operation for the input and output signals.

This chapter describes two different ways of modelling a dynamic sytem: The modelling
by first principles based on physical insight into the system dynamics and an experimental
based way of modelling, the system identification. The system to be modelled is the low
level radio system of the the first linear accelerator section (ACC1) of the VUV-FEL at
TTF2. The main focus is the behaviour of the superconducting cavities. In section 3.2
modelling by first principles is discussed and in chapter 4 the techniques are applied to
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model superconducting cavities.

The system identification process is described in section 3.3. Especially the choice of input
signals and a method to parametrize a model structure based on experimental data is
illustrated (see 3.3.4). In chapter 4 the resulting models of system identification of ACC1
are presented.

3.1 Model structures

The system or plant structure and its application for the process that should be described
by the mathematical model lead to a certain model type. Model types can be classi-
fied by attributes like linear/nonlinear, time invariant/time variant, models with concen-
trated/distributed parameters etc.. In this thesis two model types are used: Linear Time
Invariant (LTI) models and Linear Parameter Varying (LPV) models. LTI models are the
most frequently used models for controller design because their analysis is relatively simple
compared to more complex model structures. For a lot of control applications the plant
behaviour can be described by an LTI model accurately enough because often the nonlinear
behaviour will be approximated by local linearized models for an operating point of interest.
A variety of controller design methods for LTI models have been established by now. LPV
models contain time varying parameters and are more complicated to analyse. Controllers
for LPV models are often scheduled, i.e. the controller parameters are adjusted over time
to meet the alterating plant dynamics.

Generally speaking the model structures that are dealt with in this thesis can be charac-
terized by a finite number of parameters and are therefore called parametric models. The
frequency response or the impulse response of a dynamical system are models for the plant
behaviour as well but can not be characterized by a finite number of parameters and are
hence called nonparametric models, [28].

3.1.1 Linear time invariant models (LTI)

The I/0 behaviour of LTI models is linear and the model parameters do not vary over
time. In the following description of some LTI model structures the focus is put on discrete
time models. In modern digital control, measuring of system output signals and applying
actuator signals on the plant takes place at equidistant time intervals, the sampling instants.
Continuous time models and the conversion between discrete and continuous time LTI
models is only discussed briefly. For a more detailed presentation of this topic see e.g. [16].
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u(t) y(t)

Figure 3.1: System with input and output signals

ARX models

Considering a process with one input signal u(t) and one output signal y(t) (see figure 3.1)
a simple relationship between the actual output at time t and the past input and output
values is a linear difference equation. If the application of the inputs and the measurement
of the output only takes place at discrete time instants

t = kT (3.1)

with T as sampling time and k as the index of the samples, the linear difference equation
can be written as

y(kT ) + a1y(kT − T ) + a2y(kT − 2T ) + · · ·+ any(kT − nT ) (3.2)

= b1u(kT − T ) + b2u(kT − 2T ) + · · ·+ bmu(kT −mT ) .

If a normalized unitfree sampling time of T = 1 is assumed, eq.(3.1) becomes t = k and
this can be substituted in eq.(3.2) as follows

y(k) + a1y(k − 1) + a2y(k − 2) + · · ·+ any(k − n) (3.3)

= b1u(k − 1) + b2u(k − 2) + · · ·+ bmu(k −m) .

An important assumption in eq.(3.3) is that the system is not corrupted by any form of noise
(process noise or measurement noise). If an output disturbance is present the disturbance
term d(t) has to be added to the right hand side of eq.(3.3) (see the description about
output error models at the end of this section for more details).

The described model structure contains an AutoRegressive part (the past outputs) and
eXogeneous inputs (the system excitation by the input signals). Such a structure is called
ARX model.

State space models

Equation (3.3) can be transformed into an equivalent representation in discrete time do-
main, the state space model. To obtain the actual value of the output signal at the sampling
instant k the last n output samples and the last m input signal samples must be known.
Introducing new variables xj called states

x1(k) = y(k − n) ,
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x2(k) = y(k − n+ 1) ,

· · ·
xn(k) = y(k − 1)

and substituting for the output values state variables

x1(k + 1) = x2(k) ,

x2(k + 1) = x3(k) ,

· · ·
xn−1(k + 1) = xn(k)

leads to the following relation for the last state space variable

xn(k + 1) = y(k)

⇔ xn(k + 1) = [b1 b2 · · · bm]




u(k − 1)
u(k − 2)
· · ·

u(k −m)


−

n∑

i=1

aiy(k − i)

⇔ xn(k + 1) = [b1 b2 · · · bm]




u(k − 1)
u(k − 2)
· · ·

u(k −m)


−

n−1∑

i=0

ai+1xn−i(k) . (3.4)

Assuming n = m, eq.(3.4) can be written in matrix format (for a detailed deduction see
[15],[16]) using the following matrices:

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−1 −a1 −a2 · · · −an−1



, (3.5)

b =




0
0
...
1



, (3.6)

c′ = (−bn, b1 − bna1, . . . , bn−1 − bnan−1) , (3.7)

d = bn . (3.8)

The state space model form for a single input single output system then becomes

x(k + 1) = Ax(k) + bu(k) ,

y(k) = c′x(k) + du(k) , (3.9)

x(0) = x0 .
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where x0 denote the initial state of the system. An important point is that the state space
representation of a system is non-unique: The states of a system are internal variables
that need not have any physical meaning and can be choosen convenient for the modelling
procedure. By using similarity transforms a new basis for the state space can be generated.
For a detailed description of these transformations, see [15]. A state space model whose
matrices have the structure shown in eq.(3.5) - (3.8) is called to be in the controllable
standard form. Transfer functions on the contrary are a unique description of a dynamical
system and will be presented in this section as well.

If the system is multivariable, i.e it has q inputs (u(t) ∈ Rq) and r outputs (y(t) ∈ Rr),
the dimensions of the matrices become A ∈ Rn×n, B ∈ Rn×q, C ∈ Rr×n, D ∈ Rr×q such
that the state space model for a multivariable system is given by

x(k + 1) = Ax(k) +Bu(k) ,

y(k) = Cx(k) +Du(k) , (3.10)

x(0) = x0 .

Transfer functions

If a discrete time domain signal x(k) should be transformed into frequency domain the
z-transform can be used which is defined as follows

Z[x(k)] = X(z) =
∞∑

k=0

x(k)z−k . (3.11)

The relation between the complex variable z and the complex variable s used in the Laplace-
transformation is

z = esT . (3.12)

Taking the z-transform of both sides of eq.(3.3) and factoring out the transformations of
the input and output signals yields

Y (z) · (1 + a1z
−1 + a2z

−2 + · · ·+ anz
−n) = U(z) · (b1z

−1 + b2z
−2 + · · ·+ bmz

−m) . (3.13)

The discrete time transfer function G(z) is defined as

G(z) =
Y (z)

U(z)
=

b1z
−1 + . . .+ bmz

−m

1 + a1z−1 + . . .+ anz−n
. (3.14)

The transfer function in eq.(3.14) has m zeros and n poles1. As already discussed in the
previous subsection a transfer function is a unique description of a dynamical system. In
case of a multivariable system with q input channels and r output channels a frequency
domain representation of the system is the transfer function matrix G(z) ∈ Rr×q. For a

1The zeros and poles of course characterize the behaviour of the model but a detailed classification of
transfer functions according to poles and zeros is omitted here. In literature on control theory basics like
[15] and [16] this classification is thoroughly discussed.
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given state space representation of a model a conversion into the systems transfer function
is

G(z) = C(zI −A)−1B +D . (3.15)

Parametric LTI models in continuous time domain

The models presented up to now are expressed in discrete time, i.e. the models describe the
system behaviour for each sampling instant defined by eq.(3.1). If the system behaviour
should be described in continuous time differential equations and continuous time state
space models can be used.

x = Ax + Bu

y = Cx + Du

(t) (t) (t)

(t) (t) (t)

x = x(0) 0

G = C(sI - A) B + D(s)
-1
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= b u + ... + b u(t)

(n) (n-1)
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n-1 1

m 1
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Figure 3.2: Models for LTI and LPV systems and their conversions

The linear differential equation

y(n)(t) + · · ·+ a1ẏ(t) + a0y(t) = bmu
(m)(t) + · · ·+ b1u̇(t) + b0u(t) (3.16)

describes a single input single output (SISO) system in continous time. The values of the
coefficients of eq. (3.16) however are usually not the same as in eq. (3.3).

In [15] a rigorous deduction of the equivalent continuous time state space model can be
found which has the structure

x(t) = Acx(t) + bcu(t) ,

y(t) = c′cx(t) + dcu(t) , (3.17)

x(0) = x0 .
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with the matrices

Ac =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1



, (3.18)

bc =




0
0
...
1



, (3.19)

c′c = (b0 − bna0, b1 − bna1, . . . , bn−1 − bnan−1) , (3.20)

dc = bn . (3.21)

The state space model in eq.(3.17) is again presented in the controllable normal form. For
multivariable systems the continuous state space system has the following form

x(t) = Acx(t) +Bcu(t) ,

y(t) = Ccx(t) +Dcu(t) , (3.22)

x(0) = x0 .

The matrices of eq.(3.22) have the same dimensions as the state space matrices of eq.(3.10)
if again q inputs and r outputs are considered. In the following the indices for the state
space matrices are omitted although discrete time and continuous time state space matrices
are not equal. The context of the following chapters however should make clear if discrete
or continuous time state space matrices are meant.

An overview on the models for LTI and LPV systems is shown in figure 3.2. Presented
are only parametric models because they are mainly focussed on in the model building
procedures in this thesis. The models of LPV systems, which are described in more detail
in section 3.1.2, can be structured analogously to LTI models.

Disturbance sources and parameter disturbance input

The models presented so far do not include any kind of disturbances or noise. Their absence
is an unlikely case because in real systems every electronic component induces noise on the
signal it transmits and mechanical components are excited by environmental vibrations.
These disturbances lead to unwanted signal behaviour and are one of the main reasons why
feedback control is applied.

It has to be specified for the disturbances where they enter into the control loop (see Figure
3.3). Output Disturbances d(t) like vibrations changing a position to be controlled are
superimposed on the plant output signal y(t). Measurement noise n(t) is caused by the
sensor elements that measures the output signals for inducing feedback, [15].
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Figure 3.3: Control loop structure with disturbances

Another type of disturbance used in this thesis for modelling the detuning of the supercon-
ducting cavities (see section 4.2) is a parameter disturbance input p(t). This disturbance
signal changes the parameter of the plant continuously.

Output error model structure

A model used for the parameter estimation of the system identification process (see section
3.3.4) is the output error (OE) model. In the ARX model presented in section 3.1.1 it
was first assumed that the plant’s output signal is not currupted by any disturbance. If
this assumption is removed the output signal of the plant results from the sum of the
undisturbed output w(t) and the disturbance d(t) as shown in Figure 3.4, [14]:

y(t) = w(t) + d(t)

=
B(z)

F (z)
u(t) + d(t) (3.23)

Equation (3.23) is given in time domain because in this context z is the forward shift
operator defined by

zu(t) = u(t+ 1) , (3.24)

not to be mistaken for the complex variable z of the z-transform

The function H(z) = B(z)
F (z)

consists of the polynomials B(z) and F (z) in the forward shift

operator z. We assume that the polynomial coefficients of H(z) characterizing the mapping
from u(t) into w(t) are not exactly known but shall be identified based on input/output
data, and introduce the parameter vector containing the coefficients of H(z) as

θ = [b1 b2 . . . bm f1 f2 . . . fn] . (3.25)

The polynomial B(z) is assumed to be of order m while F (z) is assumed to be of order

n. In an OE model, a model structure Ĥ(z) = B̂(z)

F̂ (z)
of the same order in numerator and
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Figure 3.4: Output error model structure

denominator as H(z) is connected in parallel to the model H(z), i.e. the same input data
enters both models. The goal of this structure is to adjust the parameters of H(z) such
that the output error

e(t) = y(t)− ŷ(t) (3.26)

is minimal with respect to a certain criterion (usually formulated as an error functional).
OE model structures are used in system identification. The aspects of parameter estimation
and a criterion regarding the minimization of e(t) are presented in detail in section 3.3.

The undisturbed plant output w(t) of the plant can be constructed from the difference
equation

w(t+ n, θ) + f1w(t+ n− 1, θ) + . . .+ fnw(t, θ)

= b1u(t+m− 1) + . . .+ bmu(t) . (3.27)

Because in this case d(t) = 0, the plant output be reproduced by H(z) if Ĥ(z) is parametrized
with θ such that

w(t) =
B(z)

F (z)
u(t) = ŷ(t|θ) (3.28)

where ŷ(t|θ) is the so-called natural predictor of the real plant output, [14].

3.1.2 Linear parameter varying models (LPV)

A possible way of designing controllers for nonlinear systems is to linearize the system
with respect to different operating points and use a linear controller for each of them. By
switching between the controllers obtained in this way, the overall controller results for the
approximated system. This technique is called (linearized) gain scheduling.

Linear Parameter Varying (LPV) systems can be considered as nonlinear systems which
are linearized along a time varying trajectory. Modelling and identification of LPV systems
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is described in various papers of the last years and a textbook, [26]. LPV models can be
described by state space models in which the system matrices are fixed functions of a known
time varying parameter vector pv(t) ∈ Rs. In a continuous time framework the state space
equations can be expressed as

ẋ(t) = A(pv(t))x(t) +B(pv(t))u(t)

y(t) = C(pv(t))x(t) +D(pv(t))u(t) (3.29)

x(0) = x0 .

The parameter vector pv(t) determines the time varying parameter trajectory used for the
linearization of the system.

To overcome various drawbacks of the gain scheduling approach (e.g. the often large number
of linear models needed and the slow changes between operating points which are required
for adequate performance) research concentrates on the design of a global controller for LPV
systems. The term global refers to the fact that one controller should be able to control the
LPV system for the whole set of operating points. This is only possible with a nonlinear
controller because of the nonlinear system behaviour for different operating points.

The structure of the global controller K can be described by a state space model in the
form of eq.(3.29) as well. The controller depends on the systems states x(t) on the one
hand. On the other hand, knowledge about the actual parameters pv(t) is required for the
synthesis of such a controller such that K = K(x(t),pv(t)). However, online measurement
of the time varying parameters will not naturally be possible. Even if the time varying
parameters can be measured, effects of measurement noise and the influence of parameter
uncertainties on the controller will have to be taken into account.

System identification and controller design for LPV systems are a focus of actual research.
This involves e.g. investigations to which extend analogies to linear identification tech-
niques like subspace methods, which are described in section 3.3.4, are applicable for the
identification of LPV systems.

3.2 Modelling by first principles

A model of a process or a dynamic system is a description of its I/O behaviour. This
description can be mental (an experience based model e.g. the mental model to drive a car
in daily life), graphical (e.g. tables or plots of characteristics) or mathematical. For high
performance control applications mathematical models are used which describe the system
dynamics most often by differential or difference equations, [14].

A first step for modelling a complex dynamic system is to divide the system into subsystems.
The transfer behaviour of the system can then be described by joining the subsystems
mathematically, [14]. Often the reason for this subdivision is that the dynamics of the
subsystems can be described analytically by first principles. These could be differential
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or difference equations based on physical laws. Usually simplifying assumptions about the
system have to be made to derive models by first principles.

For the basic equations the following types can be distinguished, [7]:

1. Conservation equations for stored energies, masses and impulses.

2. Component equations (physical-chemical state equations).

3. Phenomenological equations for irreversible processes taking place (e.g. heat
transfer, diffusion or chemical reaction).

4. Entropy conservation equations if various irreversible processes occur (if not in-
cluded in 3).

5. Connection equations describe the connection of process elements.

Furthermore the dependencies of the system parameters must be clarified. Parameters
can either be distributed (depending on time and position) or concentrated (not position
dependent). While systems with distributed parameters must be modelled by partial differ-
ential equations, those with concentrated parameters are modelled by ordinary differential
equations.

After the description of the single process elements the resulting equations are joined by
mathematical connection laws thus often leading to complicated complete systems. Of
course, the resulting models are not necessarily linear. Depending on the characteristic
of the nonlinearity and the control objectives a linearization with respect to one or more
operating points can be done. This is one possible step towards model simplification.
Another could be for example the approximation of distributed parameters by concentrated
parameters if the operating point is stationary in position, [7].

However, if the system dynamics are not well-understood, the model equations can not be
derived easily or effects are neglected in the equations which are important for the system
dynamics. Furthermore, physical state equations are usually subject to restrictions (e.g.
operating points like power levels etc.). For the resulting model, assumptions have to be
made which suppose the underlying equations hold for the physical conditions the system
operates in. The alternative to modelling by first principles is system identification which
is described in section 3.3.

3.3 System identification

Another way to obtain a model of a dynamic system is system identification. This is an
experimental based way of modelling. The basic idea behind it is to excite a system with
specifically designed input signals (how these signals are chosen will be explained in section
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3.3.2), record input and output data of the plant (usually in open-loop) and estimate the
parameters of a choosen model structure by analyzing the recorded data. For the data
analysis e.g. MATLAB’s System identification toolbox can be used.

The following explanations deal with linear system identification only, i.e. the obtained
models are linear. Nonlinear systems thus can only be described appropriately by these
models for a certain operating point and in a certain frequency range.

3.3.1 Structure of the identification process

The system identification process can be structured into four main steps, [14]:

1. The data record: The system to be identified must be excited by well chosen input
signals (see the following section) such that the dynamical behaviour of the system
is revealed. The experiments are usually done in open-loop because the uninfluenced
system behaviour should be identified. The experiments result in sets of measured
I/O data.

2. Choice of set of models or the model structure: Depending on the previous
knowledge of the system to be identified, gray box or black-box models can be chosen.
These terms will be explained in section 3.3.3. The choice of an appropriate model
structure involves the dynamic order of the model as well. Techniques to choose the
order approriately are presented in section 3.3.4.

3. Estimation of the model parameters: Upon all the models included in the chosen
model structure one has to be found that reproduces the measured data best with
respect to a chosen objective. This objective could be an output error functional
that should be minimal for an obtained parameter set of the model. The model is
parametrized by analyzing a set of measured data, which will be called ID data.

4. Model validation: An I/O model of a system must proof its quality of predicting
output data of the system sufficiently accurate within the operation range the model
has been developed for. Validation means that a data set not contained in the ID
data set is used to test the performance of the model by comparing the measured
output data with the model output for the same input data.

Usually, system identification is an iterative process because it is most likely that the first
obtained model will not show good performance in validation. The reasons for this can be
e.g. that the input data was not informative enough to reveal certain system behaviour
or that numerical problems occurred during the parameter estimation, thus leading to a
mismatched parametrization.
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Table 3.1: PE orders for standard signals, [28]

Signal type Order of PE

Dirac impulse δ(k) 0
Step function σ(k) 1
Sine wave sin(k) 2
White noise ∞

3.3.2 Choice of input signals

To choose appropriate input data for the system identification experiments is a very impor-
tant step in the identification process and mainly responsible for the quality of the inferred
model. The input data must excite all dynamic modes of the system that are of interest
for the model. That means that the input data must be “rich” enough of excitation, [28].

To classify the excitation properties of a signal the property persistency of excitation (PE)
can be used. The degree of the persistency of excitation is a measure for the information
content of a signal.

Theorem 3.1 A signal u(k) is persistently exciting of order n if and only if

lim
k→∞

1

k

(
k∑

l=0

a(z)u(l)

)2

> 0 ∀a(z) : deg a(z) ≤ n (3.30)

In this theorem a(z) is a polynomial in the forward shift operator z that has been defined
in eq.(3.24). The structure of a(z) is thus given by

a(z) = a0 + a1z + a2z
2 + . . .+ an−1z

n−1 . (3.31)

In [14] the following theorem is derived:

Theorem 3.2 Consider a set M of models such that their transfer functions G(z, θ) are
rational functions:

G(z, θ) =
B(z, θ)

F (z, θ)
=
z−nk (b11 + b2z

−1 + . . .+ bnbz
−nb+1)

1 + f1z−1 + . . .+ fnfz
−nf . (3.32)

Then an open-loop experiment with an input that is persistently exciting of order nb +nf is
sufficiently informative with respect to M.

With the help of eq. (3.30) the information content of a signal can be quantified. If a
polynomial a(z) of order n can be found that does not satisfy eq.(3.30) the signal has a
lower oder of persistency of excitation than n. The PE orders of some standard signals are
listed in table 3.1. Hence, a suitable test signal for identification experiments is bandlimited
white noise (see chapter 5.2.1).
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3.3.3 Model structures for system identification

The model structure specifies the type of model which is obtained by the identification
process. With linear system identification linear time invariant model structures such as
transfer functions or state space models are parametrized.

In section 3.3.1 the model structures black box models and gray box models have been men-
tioned. The terms refer to the structural constraints for the parametrization of the chosen
LTI-model. For black box models, the parameters can be considered purely as vehicles for
adjusting the fit while the parameters of gray box models incorporate an amount of physical
insight into the system behaviour which implies constraints on the model structure, [14].

After the decision is made which model structure model shall be used, the model order
must be specified. This can be done by analysis of the recorded data sets using the singular
value decomposition (see section 3.3.4 and appendix A). Once a defined system order or a
range of orders is specified, a model set exists whose parameters must be estimated in the
identification process. The formal definition of a model structure can be found in [14]. A
model structure can be considered as a parametrized set of models.

Structural constraints for parametrization

If gray box models are used, the parametrization of the model structure is constrained to
resemble the amount of physical insight of the system behavior in the model. For example,
a certain structure for the system matrix A of a state space model can be specified such
that some matrix elements have the same value or are common multiples 2.

3.3.4 Estimation of the model parameters

After the experimental data is recorded it has to be analysed to obtain the parameters
of the chosen model structure. A variety of parameter estimation methods exists and as
literature sources [14], [8] and [9] are recommended. For the parametrization of LTI model
structures, direct subspace methods are a well established tool and will be described in
he following section. Direct subspace methods are implemented in the MATLAB System
Identification Toolbox.

2In MATLAB commands like idgrey in combination with modreal can be used to apply constraints on
a model set
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Direct subspace methods

A powerful method to estimate the parameters of LTI state space models for multivariable
systems are direct subspace methods 3. Here only a brief idea of the method shall be outlined
at the example of a multivariable (MIMO) system, [28].

The state space form of the model is given by

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(3.33)

and the dimensions of the signals are y ∈ Rn, u ∈ Rm and x ∈ Rl. A very important
point is that the order of the system l is not yet known and has to be determined in the
identification process. The measured output data y can be represented for each time instant
k as:

y(k) = Cx(k) +Du(k)

y(k + 1) = CAx(k) +CBu(k) +Du(k + 1)

y(k + 2) = CA2x(k) +CABu(k) +CBu(k + 1) +Du(k + 2)
...

(3.34)

If α samples are considered for an output data set the following matrices are introduced

Oα =




C
CA
CA2

...
CAα−1



, Ψα =




D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0

...
...

. . .
. . .

...
CAα−2B CAα−1B . . . CB D



,

X =
(
x(1) x(2) . . . x(N)

)

and with the vectors

Y k =




y(k)
y(k + 1)

...
y(k + α− 1)



, Uk =




u(k)
u(k + 1)

...
u(k + α− 1)




we can write the outputdata of the system as

Y k = Oαx(k) + ΨαUk . (3.35)

3Developed in the 1990s by De Moor and Van Overschee, see [25] for details
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The matrix Oα is the so-called extended observability matrix.

The dimensions of the matrices are Oα ∈ Rnα×l, Ψα ∈ Rnα×mα, X ∈ Rl×N , Y k ∈ Rnα×1

and Uk ∈ Rmα×1.

Assuming that a number of N + α − 1 samples of I/O data for each channel has been
recorded the following matrix can be formed

(
Y 1 Y 2 . . . Y N

)
=




y(k) y(k + 1) . . . y(k +N)
y(k + 1) y(k + 2) . . . y(k +N + 1)

...
... . . .

...
y(k + α− 1) y(k + α) . . . y(k +N + α− 1)



. (3.36)

The matrix denoted in eq.(3.36) consists only of measurement data and a matrix of this
structure is called Hankel matrix. It is constructed analogously to the moving horizon
principle4: Each column marks a data sequence of length α and the next column is obtained
by stepping (in this case) one sample forward (moving horizont).

If we define
Y =

(
Y 1 Y 2 . . . Y N

)
(3.37)

and form a Hankel matrix for the input data analogously

U =
(
U 1 U 2 . . . UN

)
(3.38)

we can write eq. (3.35) as
Y = OαX + ΨαU . (3.39)

The matrices in eq.(3.39) have the dimensions Y ∈ Rnα×N and U ∈ Rmα×N . To identify
the parameters of the state space model the matrices Oα (giving C and A) and Ψα (from
which D and B can be extracted) must be obtained. The value of α should be chosen
greater than the expected model order.

For the parameter estimation procedure a projection is used that maps the output data on
the nullspace of the input matrix U to eliminate the term ΨαU in eq.(3.39) such that the
term OαX can be estimated.

Definition 3.1 The space of all vectors q that result in a null vector when multiplied from
the left by U is defined as the nullspace N (U):

N (U) = {q : Uq = 0} . (3.40)

The matrix
Π = I − UT

(
UUT

)−1U , Π ∈ RN×N (3.41)

4The term moving horizon has its origin in predictive control, where future control signals are predicted
for a specified time interval (horizon) ahead on basis of past I/O data, [3]
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is used to project Y on N (U), [28]. The condition that UU T is invertible is fullfilled
because the input data is assumed to be persistenly exciting of order mα. Because of this
projection the name subspace methods has been given to the identification routine. The
projection yields

YΠ = (OαX + ΨαU) Π = OαXΠ . (3.42)

The matrix Oα has l columns, therefore the known matrix YΠ can be factorized into a
left matrix with n columns and a right matrix with n rows. This is done with the singular
value decomposition (see appendix A for a detailed deduction) and yields

YΠ = QsΣsV
T
s +QnΣnV

T
n ≈ QsΣ

1/2
s Σ1/2

s V T
s . (3.43)

With the matrices Qs ∈ Rnα×r̂ and V T
s ∈ RN×r̂ the matrix YΠ is factored in a left factor

with l columns and full rank and a right factor with l rows. This leads to the the following
result for the model order and the estimation of A and C:

Model order and estimation of Oα
The numerical rank (see appendix A) of YΠ, that equals the model order l, can be
estimated by the investigation of the singular values, i.e. the diagonal elements of Σ.
Furthermore, using the singular value decomposition of YΠ the extended observability
matrix Oα can be estimated. Thus, the state space model’s matrices C and A are
obtained:

Oα = QsΣ
1/2
s =⇒ C, A (3.44)

In appendix A it is noted that the factorization matrices Q and V are orthogonal which
gives

QQT =

(
QT
s

QT
n

)(
Qs Qn

)
=

(
I 0
0 I

)
. (3.45)

Because QT
nQs = 0 the approximation QT

nOα ≈ 0 can be done. Multiplying eq.(3.39) by

QT
n from the left and by UT

(
UUT

)−1
from the right yields

QT
nYUT

(
UUT

)−1
= QT

nΨα . (3.46)

In eq.(3.46) Ψα is the only unknown term and can be calculated by solving a linear system
of equations. This gives the missing state space model matrices B and D such that all
model parameters are identified. The algorithm can be summarized as follows:
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Direct subspace projection algorithm:

• Form the matrices Y k, Uk and the according Hankel matrices Y and U .

• Calculate the projection matrix Π (eq.(3.41)) and perform the projection YΠ.

• Calculate the model order by inspecting the singular values of YΠ (eq.3.43) and
calculate Oα.

• The first n rows and l columns form C and A can be calculated from Oα and C
solving a linear set of equations resulting from the structure of Oα.

• Calculate Ψα using eq.(3.46).

• Extract D and B solving a linear set of equations resulting from the structure of
Ψα.

MATLAB provides with the command n4sid a tool to use subspace methods for parameter
estimation.
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Chapter 4

Physical RF model of ACC1

To model the dynamics of superconducting cavities by first principles, the resonator dy-
namics can be divided into an electrical part and a mechanical part. In this chapter first,
a model of the RF-field behaviour in superconducting cavities is derived using analogies to
an electrical resonant circuit. The resultant resonant circuit model is an LPV state space
model and its properties are investigated. Moreover, modelling of mechanical vibration
modes of the cavities is discussed. The derivation of the resonant circuit model and the
modelling of the mechanical dynamics of the cavities is described in the section 4.1 on the
basis of [20].

The resonant circuit model is tested in an output error (OE) model structure (see figure
4.7). It has to be clarified whether it is an appropriate model for the large signal cavity
behaviour for the aspect of controller design. The model output is compared with open-loop
measurement data of TTF2. The parameters of the model like the cavity bandwidth ω1/2

are estimated by two different optimization routines to optimize the model output error in
a least squares sense (see 4.3.2). The evaluation of the results, which is presented in section
4.3.3, suggests that a different approach to the modelling of the linear accelerator module
ACC1 seems reasonable, the system identification (see section 3.3).

4.1 Electrical resonant circuit model

In [20] it is proposed that the electrical behaviour of a superconducting cavity can be phys-
ically modelled using analogies to an electrical resonant circuit consisting of an inductance,
a capacitor and a resistor (see Figure 4.1).

The quality of a resonant device can be described by the quality factor Q which is defined
as

Q = 2π
stored energy in resonator

dissipated energy per cycle
=
ω0W

Pdiss
(4.1)
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Figure 4.1: Electrical resonant circuit

where W denotes the energy stored in the resonator, ω0 is the resonance frequency and Pdiss
is the dissipated power, [30]. The unloaded quality factor Q0 of a superconducting cavity
can be obtained if only the (still present) RF resistance R of the cavity walls is considered
responsible for the losses. Thus the dissipated power can be expressed as Pdiss = V 2

0 /(2R)
and the stored energy as W = 1/2CV 2

0 where V0 is the amplitude of the oscillating voltage
and C the capacity of the resonator. Inserting these terms in eq.(4.1) and using the equation

for the resonance frequency of an LC-circuit ω0 =
√

1/LC yields

Q0 =
2π

T
·

1
2
CV 2

0

1
2

V 2
0

R

= ω0RC =
R

Lω0

(4.2)

where T = 2π
ω0

in this context denotes the oscillation period of the LC-circuit in resonance.
Considering further energy dissipation by the power coupler and the transmission lines (the
external load) the external quality factor Qext is defined as

Qext = 2π
stored energy in cavity

dissipated energy in external devices per cycle
=
ω0W

Pext
(4.3)

where Pext is the dissipated power in all external devices. The so-called loaded quality
factor of a resonantor system is obtained by considering all losses, i.e.

QL = 2π
stored energy in cavity

total energy loss per cycle
=
ω0W

Ptot
(4.4)

with the conservation condition such that the total power loss equals the sum of the power
loss caused by the external load and the dissipated power in the resonator itsself

Ptot = Pdiss + Pext . (4.5)

The combination of equations (4.2), (4.3) and (4.4) results in

1

QL
=

1

Q0
+

1

Qext
. (4.6)
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The unloaded quality factor of superconducting cavities is typically several orders of mag-
nitude larger than the external quality factor (Q0 � Qext) and therefore QL ≈ Qext holds.

In chapter 2.2.2 the couplers have been be described as electrical transformers. If the
external loads are taken into account for calculations on the cavity side of the coupler,
these loads must be scaled according to the electrical transformation laws. When this is
done, the external power losses can be modelled as caused by a parallel resistor Zext in
the cavity’s resonant circuit (for a detailed explanation of the transformation procedure see
[20]). The combination of the parallel resistors yields the shunt impedance

1

RL
=

1

R
+

1

Zext
, (4.7)

where Zext is a real quantity (the characteristic impedance of a coaxial cable is 50Ω).

An approach to model a superconducting cavity is to describe the cavity as an externally
driven LCR resonant circuit. In Figure 4.1, Ig denotes the generator current driving the
cavity and Ib is the current caused by the moving electrons of the pulsed beam. Considering
an harmonic generator current Ig = Îg,0 · sin(ωt), for the superposition of Ig and Ib only
the Fourier component of the pulsed electron beam at the frequency ω has to be taken into
account, [20]. The resulting total driving current is denoted I(t).

Using Kirchhoff’s rule, the driving current results in

Icav = I = IC + IL + IR . (4.8)

Differentiating eq.(4.8), inserting the parameters R, C, L and introducing the voltage V of
the parallel circuit gives

V̈ (t) +
1

RLC
V̇ (t) +

1

LC
V (t) =

1

C
İ . (4.9)

The inductance L and the capacitance C can be replaced by the quantities QL and ω0

( 1
RLC

= ω0

QL
and 1

LC
= ω2

0) to get

V̈ (t) +
ω0

QL
V̇ (t) + ω2

0V (t) =
ω0RL

QL
İ . (4.10)

With the assumption of a harmonic generator current Ig(t) the current I(t) = Î0 sin(ωt)

is harmonic as well and thus the driving term of eq.(4.10) is İ(t) = Î0ω cos(ωt). The
particular solution of the differential eq.(4.10) describes the stationary behaviour of the
resonant circuit and is given by the harmonic oscillating voltage

V (t) = V̂ · sin(ωt+ ψ) (4.11)

with the phase relation

tan(ψ) = RL ·
(

1

ωL
− ωC

)
(4.12)
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and the amplitude

V̂ =
RLÎ0√

1 +
[
RL

(
1
ωL
− ωC

)]2 . (4.13)

The phase angle ψ between the driving current I and the voltage V is defined as the tuning
angle of the cavity [20]. To point up the relation between the drive frequency ω and the
cavity’s resonance frequency ω0 again the parameters L and C are replaced with QL and
ω0 yielding

tan(ψ) =
ω0

ω
· RL

ω0L︸ ︷︷ ︸
QL

− ω

ω0
· ω0RLC︸ ︷︷ ︸

QL

= QL

(
ω0

ω
− ω

ω0

)
and (4.14)

V̂ =
RLÎ0√

1 +Q2
L

(
ω0

ω
− ω

ω0

)2
=

RLÎ0√
1 + tan2(ψ)

. (4.15)

The following approximations can be done if the drive frequency is close to the cavity’s
resonance frequency such that ∆ω = ω0 − ω is small:

tan(ψ) ≈ 2QL
∆ω

ω
(4.16)

V̂ (∆ω) ≈ RLÎ0√
1 +

(
2QL

∆ω
ω

)2
(4.17)

The bandwidth where the voltage decreases by a factor of -3dB (1/
√

2) from its maximum
V̂0 = RLÎ0 is denoted as ω1/2 (the so-called half-bandwidth of a superconducting cavity
because the energy stored in the cavity drops by half). From eq.(4.15) and (4.17) results

| tan(ψ)| = 1 ⇐⇒ ψ = ±π
4

(4.18)

ω1/2 =
ω

2QL

. (4.19)

With eq.(4.19) a more demonstrative definition of the loaded quality factor QL is given
because with QL = ω

2ω1/2
the “sharpness” of the resonance peak in the cavity’s frequency

response is described (see Figure 4.2), [30].

System theoretical analysis of the resonant circuit equation

Further analysis of eq.(4.10) can be done using system theoretical relations for second order
differential equations,[27]. A dynamical system of second order with input u(t) and output
y(t) (see Figure 3.1) can be described by means of the differential equation

ÿ(t) + a1ẏ(t) + a0y(t) = b0u(t) (4.20)
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Substituting the more meaningful parameters natural frequency ωn, static gain Kstat and
damping ratio ζ for the coefficients in eq.(4.20) yields

ÿ(t) + 2ζωnẏ(t) + ωny(t) = Kstatω
2
nu(t) . (4.21)

Inserting the time derivative of the driving term İ(t) = Î0ω cos(ωt) in eq.(4.10) yields

V̈ (t) +
ω0

QL

V̇ (t) + ω2
0V (t) =

ω0RLÎ0ω

QL

cos(ωt) . (4.22)

A comparison of the coefficients of eq.(4.21) and (4.22) yields

ωn = ω0 , ζ =
2

QL
� ω0 , Kstat =

RLÎ0ω

QLω0
.

With standard values1 QL = 3 · 106, ω0 = 2π · 1.3 · 109 Hz and RL = 1/2 · Rsh ≈ 521Ω
the bode diagram of the resonant circuit equation (4.22) can be constructed (see Figure
4.2). Important to notice is the fact that only the nine-cell resonator’s π-mode (see 2.2.2
for details) is considered in eq. (4.22) and its bode diagram.
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Figure 4.2: Bode diagram of cavity resonator (only π-mode is considered)

In Figure (4.2) it can be seen that the system is weakly damped because ζ = 2
QL
� ω0

holds and the high QL determines the height of the resonance peak at ω0 = 1.3GHz.

1These values for the superconducting cavities of TTF2 were taken from [20]. A description of the
so-called shunt resistor Rsh = 1041Ω is omitted because it is not further used in this thesis.
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Derivation of the state-space model

To simplify computations with the harmonic voltages and currents they are described by
complex numbers denoted in bold letters. The differential equation (4.22) of the driven
resonant circuit becomes

V̈(t) +
ω0

QL

V̇(t) + ω2
0V(t) =

ω0RL

QL

İ . (4.23)

In [20] it has been shown that the resonant frequency ωres of the superconducting cavities
does not exactly correspond with the natural frequency ω0 because ωres depends on the
loaded QL in the following way

ωres = ω0

√
1− 1

4Q2
L

. (4.24)

However, because of the high loaded QL the resonance frequency of the TTF2 system can
be approximated by its natural frequency such that fres ≈ ω0

2π
= 1.3GHz.

For the operation of the free electron laser at DESY with a high beam quality, the main focus
of interest lies on the slowly changing amplitudes and phases rather than the high frequent
RF-field oscillation. Therefore, one separates the harmonic oscillation of the RF-generator
and the appropriate Fourier component of the pulsed beam with a time dependence of eiωt

from the low frequent changes of the real and imaginary part of the field vectors obtaining

V(t) = (Vr(t) + iVi(t)) · eiωt , (4.25)

I(t) = (Ir(t) + iIi(t)) · eiωt . (4.26)

In Figure 4.3 the previous considerations are illustrated: If one considers the turning voltage
vector V (t) with the frequency ω0 to be the frame of reference, only the changes in the
field envelope e.g. the magnitude and phase changes of V (t) with respect to this frame of
reference are of interest for the field quality.

By inserting this into eq.(4.23) and neglecting the second order derivatives a first order
cavity differential equation for the field envelope can be deduced (for a detailed derivation
see [20]):

V̇r(t) + ω1/2V r + ∆ωVi = RLω1/2Ir , (4.27)

V̇i(t) + ω1/2V i−∆ωVr = RLω1/2Ii . (4.28)

The bandwidth of the cavity is denoted by ω1/2. The cavity detuning is a function of time
during an RF-pulse such that ∆ω = ∆ω(t) holds. The state space model to be derived
depends linearly on the time varying parameter ∆ω and is therefore an LPV model. The
reasons for the timevarying detuning are disturbances like microphonics and the gradient
dependent Lorentz force detuning that change the resonance frequency during the RF-pulse.
The real (Ir) and imaginary part (Ii) of the resulting current from the RF-generator and
the electron beam are the inputs of the state space model. The resultant field is decribed
by the real and imaginary part (Vr and Vi) of the field’s voltage vector. The LPV state
space model is derived on the basis of eq.(4.27) and eq.(4.28) as follows:

50



I

V

V
i

V
r

0
Im

Re
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LPV state space model of electrical cavity dynamics:

(
V̇r
V̇i

)
=

(
−ω1/2 −∆ω(t)
∆ω(t) −ω1/2

) (
Vr
Vi

)
+Rω1/2

(
1 0
0 1

) (
Ir
Ii

)
. (4.29)

The parameters of the state space model are the bandwidth ω1/2 ≈ 2π · 216.7Hz (for
the TTF2 superconducting cavities) and the detuning ∆ω:

ω1/2 =
ω0

2QL
, ∆ω(t) = ω0 − ω(t) (4.30)

Analysis of the state space model for the field envelope

In this subsection the state space model of the cavities presented in eq.(4.29) is analyzed
with respect to the eigenvalues of the model,the frequency response and the controllability
as well as observability of the model. These properties are investigated for both detuned
and undetuned cavities but a fixed detuning (∆ω(t) = ∆ω) is assumed. The assumption
is reasonable for low gradients and for the flat top phase in particular where the gradient
changes are moderate.

The eigenvalues of the system matrix

A =

(
−ω1/2 −∆ω
∆ω −ω1/2

)
, (4.31)

are calculated as follows

λ1,2 = det(λ1,2I −A) (4.32)

= −ω1/2 ± i∆ω . (4.33)

In the undetuned case ∆ω = 0 rad/sec both eigenvalues are real and have the values λ1 =
λ2 = −ω1/2. The cavity acts like a lowpass filter with a bandwidth of ω1/2. The I/O
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Figure 4.4: Bode diagram of undetuned cavity: ∆ω = 0 Hz

channels are decoupled and because of the symmetry in the structure of the model matrices
the frequency responses from channel u1 = Ir to y1 = Vr and from u2 = Ii to y2 = Vi look
the same. The bode diagram of an undetuned cavity is shown in Figure 4.4.

If the cavity is detuned, both input channels are coupled with both output channels. The
eigenvalues become complex conjugated (λ1,2 = −ω1/2 ± i∆ω). In Figure 4.5 the bode
diagram for a detuned cavity with ∆ω = ω1/2 is shown. Because of the complex conjugated
eigenvalues, resonance peaks can be seen in the transfer function from u1 to y1 and u2 to
y2 respectively.

The following definitions for controllability and observability of a dynamical system can be
found in [16].

Definition 4.1 A system (A,B) is controllable if it can be transferred in a finite time
interval Tf from an arbitrary initial state x0 to an arbitrary final state x(Tf ) by an appro-
priately chosen input signal vector u[0,Tf ].

It can be checked whether a system is controllable the help of the following definition:

Definition 4.2 A system (A,B) is called controllable if its controllability matrix

C =
[
A AB A2B . . . An−1B

]
(4.34)
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has full row rank.

The property observability of a dynamical system is defined as follows:

Definition 4.3 A system (A,C) is observable if the initial state x0 can be reconstructed
from the trajectory of the input signals u[0,Tf ] and the trajectory of the output signals y[0,Tf ],
both known for a finite time interval [0, Tf ].

With the help of the following definition it can be checked whether a dynamical system is
observable:

Definition 4.4 A system (A,C) is called observable if its observability matrix

O =




A
CA
CA2

. . .
CAn−1




(4.35)

has full column rank.
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The output matrix C in eq. (4.29) is the unity matrix:

C =

(
1 0
0 1

)
.

The controllability and observability of the cavity state space model have been checked
with the help of this definitions yielding that the model is controllable and observable for
all detunings. The reason are the diagonal structures of B and C and the structure of
the system matrix A, which has full rank regardless of the value of ∆ω such that the
observability matrix and the controllability matrix have rank two.

4.2 Mechanical modes of cavities and detuning mod-

elling

The mechanical stiffness of the superconducting cavity structures is low because of the thin
walls. Vibrations and Lorentz forces cause changes in the geometrical shape of the cavity.
Due to these shape changes the electrical resonance frequency of the cavity changes as well
(see Section 2.2.5). Detailed investigations of mechanical properties of superconducting
cavities by means of finite element analysis are presented in [5].

The static detuning of a cavity by Lorentz forces is proportional to the square of the acceler-
ating field gradients E2

acc = VTV. Because in the linear accelerator of TTF2 the cavities are
operated in pulsed mode, the mechanical resonance modes of the cavity structures must be
taken into account. These dynamics can be described by the following system of differential
equations, [11]:




∆ω̇1

∆ω̈1
...

∆ω̇N
∆ω̈N




=




0 1 · · · 0 0
−ω2

1 − 1
τ1
· · · 0 0

...
...

...
. . .

...
0 0 · · · 0 1
0 0 · · · −ω2

N − 1
τN



·




∆ω1

∆ω̇1
...

∆ωN
∆ω̇N




+2π




0
−K1ω

2
1

...
0

−KNω
2
N



·VTV (4.36)

The parameters of eq.(4.36) are the detuning ωm of mode m, the mechanical time constant
τm of mode m and the Lorentz force detuning constant Km of mode m. The total cavity-
detuning resulting from the modes considered is given by ∆ω =

∑
∆ωm.

This Lorentz force detuning depends on the time varying gradient thus leading to a time
varying model for the cavities electrical dynamics: In equation 4.29 the system matrix has
the time variant element ∆ω = ∆ω(t) and the state space model is an LPV model because
the system matrix A linearly depend on ∆ω(t).

Equation (4.36) is an approach to describe the complex detuning process but this model up
to now could not be validated. The detuning of the cavity can not be measured directly.
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Figure 4.6: Approximation for detuning trajectory of one pulse

Therefore a detuning curve has to be estimated on the basis of the measured input and
output signals. A reasonable choice for the qualitative shape of this curve seems to be three
continuous lines (one for each time interval filling, flat-top and decay) as shown in Figure
(4.6). Such a detuning curve ∆ω(t) can be described by four parameters: An initial value
∆ω0 (the predetuning) and a slope d∆ωi for each line. The approximation of the detuning
trajectory can be expressed by the following piecewise defined function for ∆ω(t):

∆ω(t) ≈





∆ω0 + d∆ω1(t− t0) : t0 ≤ t ≤ tfill
∆ω0 + d∆ω1(tfill − t0) + d∆ω2(t− tfill) : tfill ≤ t ≤ tflat

∆ω0 + d∆ω1(tfill − t0) + d∆ω2(tflat − tfill) + d∆ω3(t− tflat) : tflat ≤ t ≤ tend

The time intervals are defined according to Figure 4.6. The predetuning ∆ω0 is adjusted
by the operators at TTF2 such that the detuning has a zero crossing during the flat top
phase. The adjustment is done by stepper-motors mounted onto the cavities that apply
forces on the structure thus changing their length.

4.3 Results of parameter estimation for physical cav-

ity model

By equation (4.29) an LPV model for the behaviour of a superconducting cavity is described:

(
V̇r
V̇i

)
=

(
−ω1/2 −∆ω(t)
∆ω(t) −ω1/2

) (
Vr
Vi

)
+Rω1/2

(
1 0
0 1

) (
Ir
Ii

)
.
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The model has been derived in chapter 4.1. To calculate the deviation of the model output
from measured data an OE model structure (see figure 4.7) containing the electrical and
mechanical models discussed previously is implemented in SIMULINK. A description of an
output error model can be found in chapter 3.1.1.

In the OE structure the parameters are included which are not precisely known (like me-
chanical time constants τm). The goal of the simulations performed with the SIMULINK
model is to proove whether the model structure is appropriate. The parameters contained
in the model structure (included in the parameter vector θ) are estimated by optimization
routines based on genetic algorithms and direct search methods that minimize a cost func-
tional depending on the unknown parameters: The weighted sum of squared errors between
model output (ŷ(t)) and measurement data (y(t)) is taken over the sampling instants k of
one RF-pulse as a cost functional that denotes the quality of the model in an OE sense.
The functional can be written as

J(e,R) =
∑

k

eTkRek (4.37)

where the error vector ek is defined for each sampling instant as

ek = ŷk − yk (4.38)

and R denotes a weighting matrix for the errors of different output channels. In this case,
R ∈ R2×2 is a diagnonal matrix weighting the errors of the real and imaginary part of the
fields voltage vector.

Figure 4.7: Output error model for the parametrization of the resonant circuit model

Signals used for the model parametrization process

In chapter 2.2.4 parts of the calibration procedure for the measurement signals to compen-
sate influences of cable impedances etc. have already been explained. The signal flow of
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the input and output signals of one cavity is shown in figure 4.8. The RF-power resulting
from the complex generator current I = Ir + iIi for the supply of the electromagnetic fields
is guided by a transmission system based on waveguides to the coupler. The real and imag-
inary parts of the input current of the test data set is shown in figure 4.9. By the coupler
the RF-waves are transported into the cavity.

transmission/

coupler

cavity i

measurement

system

calibration

(   )" $

( *

Vr

Vi

Uf

Uf

Ir

Ii Ur

Ur

Uf

~

Ur

~

Figure 4.8: Measurement and calibration setup for each cavity in TTF2

A part of the RF-power supplied to the cavity is reflected at the coupler. The amount of
power reflected at the coupler depends on properties of the coupler and the presence of the
electron beam inside the cavity (for more details see [20]). Therefore, two input signals
are distinguished: The forward signal which supplies the main part of the field inside the
cavity and the reflected signal, which is reflected by the cavity. The resultant field inside
the cavity is determined by the crosstalk, i.e. the interaction, between forward and reflected
field that occurs in various hardware elements, about 5% crosstalk occurs in the so called
directive couplers.
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Figure 4.9: Vectormodulator input signals Ir and Ii

Forward and reflected signals are measured (see figure 4.8) but are modulated in amplitude
and phase by the transfer behaviour of the measurement system. To recover the “true” U f
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figure and magnitudes of the complex signals in lower figure

driving the cavity, transformation
(
U f

U r

)
=

(
α β
γ δ

)(
Ũ f

Ũ r

)
, (4.39)

is used for calibration where α, β, γ, δ ∈ C.

Thus, assuming that the resultant field in the cavity is a function of the forward power U f

the following relation is used: The actual forward signal driving the field in the cavity equals
the sum of the calibrated measured values of forward (Ũ f) and reflected (Ũ r) signals. With
α = a+ ic and β = b+ id this complex scaling of the forward signal can be expressed as

U f = (a + ic)Ũ f + (b + id)Ũ r . (4.40)

Using real and imaginary part of U f as the new input signal, eq.(4.29) becomes

(
V̇r
V̇i

)
=

(
−ω1/2 −∆ω
∆ω −ω1/2

) (
Vr
Vi

)
+Rω1/2


 R

{
(a + ic)Ũ f + (b+ id)Ũ r

}

I
{

(a+ ic)Ũ f + (b + id)Ũ r

}

 . (4.41)

The optimal scaling parameters are estimated by the optimization algorithm used to mini-
mize the sum of squared errors of the OE model. The uncalibrated input data is shown in
figure 4.10.

Moreover, two important points for the parameter estimation done shall be mentioned:
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1. No continuity equation like

|Uf +U r| =
√
V 2
r + V 2

i = |V |
is included, which would not be correct in a strict physical approach. However, sim-
ulations with such a continuity boundary condition have been done resulting in very
high output error functional values and thus bad model performance. The calibration
should not be the focus of the model parametrization tests but the model structure
of the resonant circuit model.

2. The measurement signals used are not normalized to physical units because the raw
measurement data has been used recorded by the DSP system. The output error
functionals have been calculated for the unscaled data as well to ensure compara-
bility with the output error functionals used for evaluation of the models developed
via system identification. Because the parameters of the resonant circuit model are
physically interpretable, the estimated values are listed in the tables 4.2 and 4.1 with
the appropriate units to compare the numerically estimated values, e.g. of the band-
width, with known values. The diagrams showing output data (Figures 4.12 and 4.13)
have been scaled according to the adjusted gradient of 14MV/m during flat top by
the value 0.005 in order to visualize the parameter estimation results more clearly
and their values approximately correspond to field gradients in MV/m.

Detuning trajectory

Two different detuning trajectories are used for the simulation of the resonant circuit OE
model: The continuous piecewise linear approach for each of the three time intervals fill-
ing, flat top and decay as described in chapter 4.2. The curve is characterized by four
parameters: An initial value (predetuning) and 3 slopes (one per interval).

The second approach is an ordinary differential equation for the detuning as proposed by
[11]. This approach has been presented in chapter 4.2 as well (see equation 4.36). Here,
only one mechanical mode is taken into account

(
∆ω̇1

∆ω̈1

)
=

(
0 1
−ω2

1 − 1
τ1

)(
∆ω1

∆ω̇1

)
+ 2π

(
0

−K1ω
2
1

)
·VTV . (4.42)

Equation (4.42) has three free parameters ω1, τ1 and K1, which are estimated by the
optimization algorithm to minimize the error functional of eq. (4.37).

4.3.1 SIMULINK block diagram

With the structure of the detuning trajectory the modified cavity state space model of
equation 4.41 can be implemented in SIMULINK as shown in figure 4.11. Because the
(real) resistance R in the state space equation only scales the input signals and a scaling is
already done by the calibration of the input signals, the resistance is normalized to R = 1Ω.
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Figure 4.11: SIMULINK output error model for resonant circuit model

4.3.2 Parameter estimation

The free model parameters (9 for the partwise linear detuning approach, 10 for the differ-
ential equation approach) are tuned by an optimization algorithm that minimizes the error
functional J iteratively. This means that for each parameter vector θ a simulation run is
done and the parameter vector is updated unless the minimum is reached.

To increase the chance the minimum reached at the termination of the algorithm is the
absolute minimum of the cost functional J two different optimization methods are combined:
A Genetic algorithm (GA) based search method and a direct search based method2. The
GA based search method is used to determine initial values for the parameters because
GA based routines have a lower possibility to get stuck in local minima like gradient based
search methods. Direct search based routines usually estimate a minimum with higher
absolute accuracy than GA based methods. In the parameter estimation problem at hand
the initial values of the parameters are estimated with the GA based method. With this
initial values the direct search method is used to locate the minimum.

The weighting matrix R in eq. (4.37) is choosen to be the unity matrix because the model
must describe both output channels with equal accuracy.

R =

(
1 0
0 1

)
.

The starting values and estimated optimal values of the simulation parameters are presented
in table 4.1 (for partwise linear detuning) and in table 4.2 (for detuning trajectory modelled

2Exemplary MATLAB Commands: ga for GA and fminsearch for direct search based methods that
uses a simplex search method, [2]
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Table 4.1: Estimated parameters for simulations with partwise linear detuning

Paramter Initial value (GA) Estimated optimal value

Predetuning ∆ω0 [rad/s] 4.644 71.103

Scaling factor a -5.705 20.642

Scaling factor b 8.853 66.245

Scaling factor c -16.558 -70.660

Scaling factor d 5.095 -37.939

Half-Bandwidth ω12 [rad/s] 22.276 818.515

Detuning slope (filling) [Hz/s] -5.977 189.209

Detuning slope (flat top) [Hz/s] -2.021 18.714

Detuning slope (decay) [Hz/s] 1.024 6.485

by differential equation). For the predetuning ∆ω0 the constraint has been applied that
only positive values are permitted. The reason is that the cavities are stretched when the
RF-field is applied such that the resonance frequency is lowered and the detuning decreases.

4.3.3 Comparison of simulation and measurements

The data for the model parameter estimation has been measured at cavity 6 of the acceler-
ator module 1 (ACC1)3. The flat top gradient has been adjusted for 14MV/m. Simulations
for other cavities have been done as well and the results were similar.

The figures 4.12 and 4.13 show the scaled measured and simulated output signals of the
cavity. Displayed is the real (Vr) and imaginary part (Vi) of the cavity field voltage vector.

Both results are obtained with the combination of GA and direct search based parameter
estimation method. The resulting functional values at which the optimization algorithm
converged are:

• Partwise linear detuning: J(e,R) = 1.14332 · 108

3Dataset: 30-Sep-2005T10-03-00gkoch-data.mat

61



Table 4.2: Estimated parameters for simulations with detuning as differential equation

Paramter Initial value (GA) Estimated optimal value

Predetuning ∆ω0 [rad/s] -0.278 0.000

Scaling factor a -3.619 19.12

Scaling factor b 14.297 50.145

Scaling factor c -15.526 -62.013

Scaling factor d 1.299 -23.670

Half-Bandwidth ω12 [rad/s] 20.389 1020.894

Natural mech. freq. ω1 [rad/s] 2π · 3.347 2π · 4.507

LFD constant K1 -0.209 1.276

Mech. time constant τ1 [s] 9.769 · 10−6 1.032 · 10−3

• 2. order differential equation (ODE) for detuning: J(e,R) = 1.11496 · 108

The model output looks reasonable in the large signal behaviour, e.g. by the sign equivalence
of the signals slopes in most of the intervals except in parts of the flat top. During the flat
top the largest deviations between model and measured output data are visible. Moreover,
it can be seen that the real part of the output signal can be better reproduced by the model
than the imaginary part. Although the cost functional of the model with the ODE for
the detuning has a lower value, the model outputs for both detuning trajectories look very
similar.

The estimated partwise linear detuning curve (figure 4.12) does not look like the expected
shape (figure 4.6) with negative slopes during filling and flat top phase and a zero-crossing
of the detuning during the flat top. The detuning even increases during the flat top phase.

The shape of the detuning obtained for the ODE model rather resembles the expected
trajectory. However, if physical units would be considered the order of magnitude of the
estimated detuning is very low (in the range of mHz). The increase of the detuning starts
already in the flat top interval not during decay.

For the comparison of the estimated parameters they are assumed to be normalized to the
physical values they have in the resonant circuit model. Taking a look at the parameters
obtained by the parameter estimation methods leads to significant results:
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Figure 4.12: Scaled (scaling factor: 0.005) simulation results for linear approximated detun-
ing with GA and gradient based parameter search methods for 9 parameters: The upper
diagram shows the comparison between measured and simulated output data, the lower
diagram shows the estimated detuning curve

• The predetuning ∆ω0 in the simulations with this recent measurement data has never
been estimated to be higher than approx. 11 Hz. That is an odd result because the
predetuning of the cavities should be in the range of approx. 200 Hz, [11]. Giving a
higher predetuning value as an initial value for the gradient based optimization, the
estimated optimal parameter is in the range of 0-12 Hz again. Thus the sensitivity
for the initial value can not cause the low estimated predetunings.

• Although the initial value for the cavity bandwidth ω1/2 has been estimated by the
GA algorithm to be quite low (ca. 20 Hz) the final estimated value lies in the range
from 130 Hz to 162 Hz which is closer to the specified bandwidth of 216.7 Hz. An
important point is that a constant bandwidth during the RF-pulse is an assumption
in the resonant circuit model. Due to mechanical and thermal disturbances deviations
in this parameter could make sense.

• The signs and values of the scaling parameters are physically not interpretable because
a continuity condition for the sum of forward and reflected input signals whith respect
to the measured vector sum signals has not been applied. The parameters are in this
context purely seen as vehicles for adjusting the fit.
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Figure 4.13: Scaled (scaling factor 0.005) simulation results with detuning modelled by
second order differential equation and GA and gradient based parameter search methods for
10 parameters: The upper diagram shows the comparison between measured ans simulated
output data, the lower diagram shows the estimated detuning curve

Both parameter estimations (piecewise linear detuning and detuning modelled by ODE)
have been done with purely direct search based parameter estimation methods and phys-
ically reasonable initial values for the parameters (except the scaling parameters) as well.
This has been a way to test if the initial parameters found by the GA based optimization
method nevertheless led to local minima and therefore unreasonable trajectories of out-
put signals and detuning. The values of the cost functional however were higher for both
detuning trajectory models, namely J(e,R) = 5.277 · 108 (partwise linear detuning) and
J(e,R) = 2.048 · 108 (ODE for detuning).

4.3.4 Conclusion of the results

Modelling based on physical insight into a system becomes more difficult the more complex
the system is. For a lot of control applications the I/O behaviour of the models shown
in the figures 4.12 and 4.13 would be sufficiently accurate in an output error model sense
when it is compared with the measurement data. The lowest achieved cost functional value
has been J(e,R) = 1.14332 · 108 for the parametrization of the resonant circuit model
including one mechanical mode for the detuning. The reasons for the deviations between
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simulated and measured data need not necessarily be the structure of the LPV model but
the simplified approach of crosstalk modelling. Crosstalk can occur in several parts of the
hardware and certainly these effects can not be reconstructed from measured forward and
reflected power at the couplers.

The severe control objectives for the XFEL though require model based high performance
controller design for the RF-fields in the cavities. That means the model structure mainly
influences the controller structure and the performance of the controller is directly related
to the quality of the model in the frequency range and operating point of interest for control.

Because the XFEL control objectives are formulated only for the flat top, models are needed
that resemble the plant behaviour very accurately in an OE model sense especially during
the flat top interval. As discussed in the previous section, this is the interval where the
resonant circuit model apparently describes the cavity behaviour rather poorly, especially
the imaginary part of the output signals.

From a control application point of view the LPV resonant circuit model of the cavity is
less suitable for controller design than an LTI model (see chapter 3 for details). If it is
possible to find an LTI model describing the behaviour of the TTF2 plant, a variety of
high performance controller design methods will be applicable. This implies that the time
varying detuning effect has to be considered as a disturbance. In the next step, system
identification methods (described in chapter 3.3) are used to develop models for the RF-
field behaviour at ACC1 such that the performance of the identified models can be compared
to the results with the resonant circuit model structure.
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Chapter 5

RF system identification of ACC1

In section 3.3 the fundamentals of the experimental based way of modelling via system
identification have been illustrated. In this chapter the system identification of the first
accelerator module ACC1 is presented. First, the modelling goals are formulated in Sec-
tion 5.1 with respect to the gradient and frequency range the models shall describe the
I/O behaviour of the system accurately. Section 5.2 describes the design of the system
identification experiments, especially the choice of appropriate input signals to receive suf-
ficiently informative measurement data from the system. Moreover, the recorded data is
analyzed with respect to high frequent noise sources and time delay between input and
output signals.

The recorded data is used to parametrize model structures. The I/O behaviour models
to be developed shall especially describe the flat top phase accurately. In the Sections
5.3 and 5.4 the obtained models are presented while two classes of estimated models are
distinguished:

• Models with an additional input signal that has been estimated in the identification
process. This signal should resemble parameter disturbances e.g. caused by detuning
of the superconducting cavities.

• Multivariable state space models in which all disturbance signals are considered out-
put disturbances.

All models presented here are LTI models which makes them well applicable for a variety
of high performance controller synthesis methods. The modelling focus on the controller
design also implies that only models for the vector sum of the field signals of ACC1 (eight
superconducting cavities) are developed because these are the plant outputs to be con-
trolled.
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5.1 Modelling goals

Crucial for the free electron laser system at DESY are stable (regarding their amplitude
and phase precision) electromagnetic fields in the cavities during the flat top. Because
the TTF2 system is underactuated (see Chapter 2.2.2) the real and imaginary part of the
vector sum of the cavity field signals are the output signals to be controlled. On the
one hand, accurate models for the small signal behaviour, i.e. in this case for the vector
sum I/O behaviour during the flat top phase, are needed for the synthesis of model based
RF-field controllers satisfying the severe control objectives that have been formulated to
make the XFEL project successful. On the other hand, the large signal behaviour, i.e. the
behaviour of the vector sum output trajectories during the RF-pulse should be resembled
in models. This is of interest because in the present system configuration overshoot in the
RF-field vector sum amplitudes and phases occurs at the beginning of the flat top interval
due to a step change in the feedforward signals. With a model describing filling and flat
top dynamics, a control strategy could be developed that minimizes this overshoot. The
models shall describe the behaviour of the RF-fields without presence of the electron beam.
The beam would lead to major disturbances because the RF-fields supply energy to the
electrons. Developing disturbance models including beam induced RF-field transients will
be part of future work.

Range of covered operating points and frequency range

The models have been inferred on the basis of data recorded for gradients from about
13MV

m
to 15.6MV

m
. The main operating point during the system identification experiments

has been set to 14MV
m

which is comparable with the gradient used when the accelerator
system operates as part of the free electron laser system. The gradient range covered by
the models should mainly focus of the interval from about 13MV

m
to 14MV

m
. In Figure 5.1

measured vector sum output signals are shown for different gradients. It can be seen that
the trajectory shapes look very similar despite of the different levels.

The small signal I/O behaviour model for the flat top should cover a frequency range up
to 100kHz to include information of mechanical modes but exclude high frequent measure-
ment noise. The large signal I/O behaviour of the system is mainly determined by the
comparatively low bandwith of the cavities (ω1/2 = 2π · 216.7Hz).

5.2 Experimental setup

5.2.1 Design of experiments

The experimental measurement setup used for the system identification of the TTF2 linear
accelerator system is shown in figure 5.2. The test setup involves the first accelerator
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Figure 5.1: Measured vector sum outputs for different gradients

cryomodule (ACC1) of the TTF2 system. In ACC1, eight superconducting nine-cell-cavities
are housed, which are driven by one klystron (klystron number 2). The actuator system
includes the elements vector modulator, two pre-amplifiers (PA1 and PA2) and the klystron.
The RF-gate can be considered a switch that enables the high power amplification of the
low-level RF-signals.

As input signals, the real and imaginary parts Ir and Ii of the vectormodulator driving signal
are used. All measurements are done in open-loop to identify only the plant behaviour.
A variety of signals within the experimental setup is measured to obtain a widespread
database for further analysing the system. The main focus regarding these output signals
is put on the complex vector sum signal of the eight cavities and on the forward, reflected
and probe signals of each individual cavity.

The recorded output data is the calibrated data of each cavity, i.e. the original data
multiplied by the rotation/scaling matrix at the output of each cavity. The calibration
coefficients have been recorded as well.

Signal units and model normalization

All signals described in the context of system identification in this chapter are not scaled
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Figure 5.2: Measurement setup for the system identifivation of TTF2. Dotted lines denote
measured signals, continuous lines resemble the signal flow in the accelerator system from
vector modulator input to vector sum output

by physical units. The normalization of the signals to physical units is not done by the
measurement system used at TTF2. Because such a normalization would require more
insight into the measurement setup, only the values, that are read out of the measurement
system, are used for the data analysis.

This implies that all models developed here by system identification are not normalized
to physical units as well. They refer to the raw measurement data recorded via the DSP
system.

5.2.2 Input signals

The input signals are applied to the system according to the feed-forward reference tables.
The standard step profile of the feed-forward table for the real and imaginary input channel
is normalized such that the maximum absolute value is one. The obtained normalized table
is called feed-forward reference table. The mean value and amplitudes of the test signals
described in this section refer to the maximum of the reference value. This means for
example that a signal amplitude of û = 0.15 has 15% of the maximum amplitude of the
standard piecewise constant feedforward profile that is presented in chapter 2.2.6.

The purpose of the reference tables is that they are scaled automatically by the signal
processing system such that the defined flat top operating gradient is reached. To excite
the system, the signals have to satisfy two main requirements:

• They must be applicable to the system. That means that the signal level and fre-
quency range must be within the operating range of the actuators (see chapter 2.2.8
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Figure 5.3: Input signals for field gradients of 14MV
m

for a detailed specification of the actuator constraints). If the amplitudes exceed these
levels, either the preamplifiers are overdriven or - in the worst case - the klystron could
be damaged.

• The signals must fulfill the excitation condition described in chapter 3.3.2 in order to
make the experiments informative enough for model building. Especially the small
signal behaviour during the flat top must be revealed by appropriate excitation signals.

Mainly, three different types of input signals are used for the identification experiments
that are shown in figure 5.3 and are characterized in table 5.1. Bandlimited white noise
has been choosen as input signal for both channels. The order of persistency of excitation
of white noise signals can be arbitrary high as shown in chapter 3.3.2.

To basically investigate the large signal cavity behaviour, a noise signal with a bandwidth
of f = 1MHz, a relative1 mean value of u0 = 0.4 and an amplitude of û = 0.15 is applied
during the whole pulse (signal 1). For the identification of the signal behaviour along
the filling and flat top trajectories (without feedback), the step-profile of the feedforward

1relative with respect to the feedforward reference table
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Table 5.1: Inputs signals for system identification

Signal number Signal type Comment

1 Bandlimited white noise Relative mean value: 0.4
during whole pulse Noise amplitude: 0.15

Gradient: 8.8 - 14.25MV
m

Bandwidth: 1MHz
2 Superimposed noise Noise amplitude: 0.15

on feedforward tables Gradient: 12.0 - 15.6MV
m

Bandwidth: 1MHz
3 Bandlimited noise Noise amplitude: 0.15

superimposed on feedforward tables Gradient: 14.0 - 15.6MV
m

Bandwidth: 200kHz

tables (see chapter 2.2.6) is used. During the filling and flat top bandlimited white noise is
superimposed on the feedforward table profile to excite small signal dynamics (signals 2 and
3). The bandwidth of the noise of signal 2 is f = 1MHz while signal 3 has a bandwidth of
f = 200kHz to emphasize the excitation of lower frequent dynamics. The noise is generated
for both input channels seperately to provide that their signals are uncorrelated.

5.2.3 Analysis of exemplary measurement data

In figure B.1 exemplary vector sum signals as responses to the applied input signals are
shown. The feedforward reference tables have been scaled to a field gradient of 14.0 MHz.

For signal 1 (bandlimited noise with a fixed mean value) only a filling profile can be seen
for the field gradients because the input signals have a constant mean value during the
RF-pulse. For the input signals 2 and 3 the gradient trajectories become the classical
three phase trajectories (filling, flat top and decay) but their flat tops are perturbed by
high frequent noise in the frequency range from 0.1MHz to 1MHz as well as low frequent
disturbances in the 1-10kHz range (e.g. caused by Lorentz force detuning).

In figure 5.4 the power spectra of an input signal of type three and the measured output
data is shown. A dominant high frequency disturbance can be seen at 250 kHz which is
caused by the local oscillators in the downconverter system (see chapter 2.2.4). The grey
lines in Figures C.1 and C.2 show the spectra of the real and imaginary input and output
signals in logarithmically scaled periodograms.

Investigations regarding time delay τ have been done using cross-correlation of the input
and output signals during the flat top phase (see figure B.5). Cross-correlation analysis
for system identification is described in [8]. The maximum of the cross-correlation func-
tion gives the time delay between input and output signals. The flat top phase has been
chosen for these investigations for two reasons: Synchronisation problems can occur at the
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Figure 5.4: Power spectrum density of input signals u1 = Ir, u2 = Ii and output signals
y1 = Vr, y2 = Vi for input signal 2 (see table 5.1)

beginning of the data recording (before the filling phase starts) due to monitoring system
problems leading to errors in the delay calculation and the flat top is the interval the mod-
els shall describe most accurately. The result is that the maximum of the cross-correlation
function is at τ = 0 and thus no delay has been assumed for the models.

Model name convention

The name convention shown in table B.1 is introduced to classify the developed models.
The resulting abbreviations will be helpful for comparisons of models. According to this
convention the modelname GLDB9x2u2y would classify a “global linear discrete time black
box model with 9 states, 2 inputs, 2 outputs and no disturbance input”.
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5.3 Model with estimated third input

The first approach for the modelling by system identification is to incorporate aspects of
the resonant circuit model structure (see Chapter 4.1) in grey box models. The main aspect
is the parameter disturbance caused by the detuning, which is a time varying parameter
in the resonant circuit model. In [20] the detuning trajectory during an RF-pulse has
been described as a concave curve and in Section 4.2 the approximation of the detuning
trajectory by three continuous lines has been presented.

Figure 5.5: Model of the accelerator module ACC1 with additional third input

To incorporate the parameter disturbance that influences the system behaviour a third input
signal u3 is implemented in the model structure (see Figure 5.5). The parametrization of
the third input is done by parameter estimation routines that minimize an output error
functional including the sum of quadratic errors.

An important point is the discussion about the interpretability of this signal in a physical
sense. The signal can certainly not be interpreted as the frequency shift in Hertz of one
or several cavities because only limited restrictions considering physical aspects are given
for its parameter estimation. However, strictly speaking the term detuning does not make
sense anyway when dealing with the vector sum of several cavity field signals because the
frequency shifts of several cavities can not simply be added and a “resulting” detuning of
ACC1 is not physically interpretable. The sense of the signal u3 is to resemble a param-
eter disturbance p(t) = u3(t) (see Chapter 3.1) of the system, not by varying the system
parameters themselves but via an additional input.

For the modelling with an estimated third input two approaches are made: In the first
approach the parameter disturbance of the cavities is considered as a system state, i.e. an
internal variable. If the trajectory of this state should have the partwise linear shape, several
constraints have to be included in the model structure and the shape of the additional
input signal p(t). This grey box approach is described in section 5.3.1. The second appoach
uses black box modelling and the parameter disturbance is directly resembled in the input
signal which leads to a partwise linear shape of p(t) itself. The models obtained by this
approach are presented in the Sections 5.3.2 and 5.3.3. Validation, i.e. the test of the
model performance with another data set than the one used for the parameter estimation,
shows that the resulting models are sufficiently accurate in the sense of residual output
error functionals J(e,R) for the RF-pulse. The weighting matrix R has for all parameter
estimation algorithms used for system identification of ACC1 been choosen to be

R = I2×2 . (5.1)
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The measurement data has not been preprocessed (e.g. filtered or detrended) for this way
of modelling because this approach mainly focusses on low order large signal behaviour
models. Removing the trends in this case would alter the large signal behaviour and low
pass filtering is not necessary because the model order is too low to follow the high frequent
disturbances in the range of 250kHz.

5.3.1 Modelling with constraints

The idea for resembling the partwise linear parameter disturbance as a state is to use a
piecewise constant trajectory for the input signal u3 and enforce parametrization constraints
in the model structure such that the input signal is integrated and the state trajectory is
partwise linear and continuous. The input signal is characterized by three parameters θi,
namely the step height for each of the three intervals filling, flat top and decay. This implies
for the dimension of the parameter vector θ ∈ R(3×1).
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Figure 5.6: Singular values for the estimation of the model order

Moreover, in this approach the basic structure of the state space matrices of the resonant
circuit model (eq.(4.29)) should be preserved. To do this the outputs are considered to
equal the first two states. The structure of the output matrix C is therefore fixed and the
model model has an order of three. For the integration of the input signals constraints on
A and B are necessary that will be discussed in more detail.

The applicability of this approach is tested with a measured data set of type 2 (see Section
5.2.2) and a gradient of 14 MV/m. First the singular values of the measurement data
matrices are inspected (see Figure 5.6). The most significant drop in magnitude of the
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singular values can be seen for model order two such that a model order of three should be
a sufficiently high order for the large signal behaviour model.

The model structure used in the following identification process is a state space model of
order three with three inputs (Ir(t), Ii(t), p(t)) and two outputs (Vr(t), Vi(t)). To emphasize
the analogies to the resonant circuit model a continuous time state space model is used:

x(t) = Acx(t) +Bcu(t) ,

y(t) = Ccx(t) +Dcu(t) .

with

y(t) =

(
Vr(t)
Vi(t)

)
, u(t) =



Ir(t)
Ii(t)
p(t)


 .

The matrix structures with respect to the discussed constraints have the following form:

0

Initialisation:

,A ,B ,C ,D0 0 0 0

Compute J

Estimate

A,B,C,D,x0

Results:

,A,B,C,D

Vary

Termination

criterion

Direct search

fullfilled

not fullfilled

Parameter ID

(pem)

Figure 5.7: Flow diagram of parameter search for grey box modelling

Ac =



? ? ?
? ? ?
0 0 0


 , Bc =



? ? 0
? ? 0
0 0 1


 , Cc =

(
1 0 0
0 1 0

)
, Dc =

(
? ? ?
? ? ?

)
.

The ? sign denotes that this matrix element is freely parametrizable in the parameter
identification process. The integration of the third input resulting from this structure can
be seen if the equation for the third state is isolated as

ẋ3 = u3 (5.2)
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because u3 is a piecewise constant signal. The gain in eq.(5.2) is fixed to 1 in the input
matrix B. The influence of x3 on the outputs is thus determined only by the elements in
the third column of the system matrix A.
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Figure 5.8: Results for constrained model (gradient 14MV/m, residual error functional
J = 1.3725 · 107)

MATLAB offers for the parameter estimation of constrained LTI models or gray box models
the commands pem and idgrey. A detailed description of the embedded algorithms can
be found in [14] and [24]. The initial states in our case are estimated by the same param-
eter estimation algorithm used to identify the state space model matrices. The complete
algorithm for the minimization of the error functional J(e,R) has the structure shown in
Figure 5.7. The termination tolerance of the algorithm is specified as a minimum change in
J(e,R) during an iteration of ε = 0.01. Dealing with output signals in the range of 103 in
magnitude this tolerance should be sufficient without stretching calculation time (approxi-
mately 2 minutes) too extensively. The parameter estimation algorithm main steps can be
summarized as follows:

1. Initial values for the unconstrained elements of Ac, Bc and θ0 =
(
θ1,0 θ2,0 θ3,0

)T
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Figure 5.9: Zoom on the vector sum output signals of figure B.4

are set manually2.

2. Vary θ by means of a direct search based parameter estimation method (fminsearch
in MATLAB).

3. Estimate state space matrix parameters for each θ using an iterative prediction error
method (pem) for the parametrization of LTI model structures.

4. Calculate J =
∑
k e

TRe with R = I2×2 for the time interval of the RF-pulse.

5. Iterate steps 2-4 until the termination condition |Jn − Jn−1| < ε is fullfilled. The
termination condition is specified for the direct search based parameter estimation
method (n is the iteration index). Here, ε = 0.01 has been chosen as a sufficiently
tight tolerance resulting in moderate calculation time.

The results are shown in Figure 5.8 and Figure 5.9. The real and imaginary part of the
vector sum are approximated acceptably well by the simulated outputs in a large signal
sense. The deviations between simulation and measurements are less destinctive in the real
part than in the imaginary part. With an equal weighting R = I (2×2) of errors in real
and imaginary part the residual error functional value is J = 1.373 · 107. The third state’s
trajectory looks even numerically reasonable compared with detuning curves described in

2The use of genetic algorithms for initial state estimation did not improve the results fairly and here
only a general test of the model structure is focussed.
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[20] for single cavities but nevertheless should not be interpreted as physically meaningful
detuning.

The estimated system matrices are not normed with respect to physical units. They are
estimated based on unitfree signals of the DSP system as:

Ac =



−0.002131 −0.004396 −0.005725
−0.002163 −0.005215 −0.00706

0 0 0


 , (5.3)

Bc =



−0.001718 −0.01117 0
0.0002524 0.02001 0

0 0 1


 , (5.4)

Cc =

(
1 0 0
0 1 0

)
, (5.5)

Dc =

(
0 0 0
0 0 0

)
. (5.6)

The eigenvalues of Ac are

λc =



−0.0018
−0.0055

0


 , (5.7)

which means the model is at the stability limit (see [15]). The eigenvalue at zero of course
has been part of the constraints and resembles the integration of the input but the two other
eigenvalues are close to the stability limit, too. This however makes sense for the weakly
damped resonator system. The estimated state space model does not have any zeros which
seems to be mainly numerically related to the lack of preprocessing (e.g. removal of mean
values, filtering etc.). To improve the accuracy of the large signal model in the following
sections the structural constraints are removed and black box model structures will be
parametrized.

5.3.2 Models for filling, flat top and decay

In the next step, models for the field trajectories during the phases filling, flat top and
decay of the pulse structure are identified seperately. The purpose is that the eigenvalues
of the model’s system matrices should be compared. By doing this it will be clarified if the
system behaviour in one of the phases significantly differs from the other phases. Then it
can be decided whether individual models for each phase are necessary or if one model is
possibly sufficiently accurate for the large signal behaviour of TTF2.

Unlike in the previously described gray box identification process now black box models
are used. Moreover, not only one data set is used for modelling but three data sets3 (two

3Of course the usage of signal type 1, which is white noise with a certain mean value does not make any
sense for this partwise identification because in the output data only a filling trajectory can be seen.
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Figure 5.10: Parameter search flow diagram for black box modelling

of signal type 2 and one of signal type 3). The model order again has been specified by an
inspection of the singular values and again a model order of three has been chosen. The
models are discrete time state space models. The reason is that the controller structure
that will be designed on the basis of the models is a discrete time structure as well.

Now the third input signal is considered to be the parameter disturbance itself such that its
trajectory consists of three linear parts. This curve is characterized by four parameters: An
initial value and a slope for each time interval (see section 4.2). However, because each part
is identified separately the third input for each part is only given by one line characterized
by an initial value and a slope, i.e. θ ∈ R2×1. No continuity condition for the parts of
the third input between the three time intervals has been given because the focus for this
models is the behaviour during the individual phases.

In this approach genetic algorithms (GA) are used for the estimation of the initial values
of θ. Then the direct search method via the MATLAB command fminsearch is used to
find the minimum in the region of the initial value. The complete parameter estimation
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Figure 5.11: Zoom on flat top for partwise identified model

algorithm used for the partwise identification is given by:

1. Use GA to estimate the initial parameter vector θ0 by minimizing the error functional
J(e,R). In each iteration the state space matrix elements are estimated by subspace
methods (n4sid) for the current θ.

2. The termination values of the GA based search are used as initial values θ0 in the
direct search methods. The cost function is the same as the one for the GA based
minimization. Initial values for the states are in both cases estimated by the subspace
identification algorithm.

3. Iterate 2. until |Jn−Jn−1| < ε holds where the tolerance for the termination croterion
to be fullfilled has again been chosen as ε = 0.01.

Figure B.4 shows an exemplary comparison between model output and measurement data.
It can be seen that very accurate fitting is achieved with a third order model for each phase.
When the end value of the parameter disturbance trajectory of one phase is compared with
the initial trajectory value of the next phase significant discontinuities can be seen but this
is obvious because of the lack of constraints. A zoom on the real and imaginary parts of
the field vectors during the flat top interval is shown in Figure 5.11. Here the curves of
measurement and simulation data can be distinguished. In the unfiltered measurement data
the corruption by high frequent noise in the range of 250 kHz can be seen. This behaviour
is of course not visible in the output of the low order model. Inspecting the modelling error
in frequency domain revealed the dominating 250 kHz noise component.

The eigenvalue distribution of the inferred models for three different data sets are shown
in Figure 5.12. All models are stable and do not contain transmission zeros. While the
models of the filling phase only have real eigenvalues, the eigenvalues of the flat top and
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Figure 5.12: Eigenvalue distribution of partwise identified models

decay models are complex and very similar in their distribution. It can also be seen that the
spread in eigenvalues of different data sets even with different gradients is moderate. This
leads to the assumption that the whole trajectory of the field envelopes can be described
sufficiently accurate by one third order black box model. This approach is discussed in the
next section.

Higher order model structures have been tested as well for the partwise identification with-
out improving the results significantly, the calculation time has however increased by several
factors compared to a model structure of order three.

5.3.3 Third order large signal model

The idea is to find a large signal model of order three which describes all three phases of
the vector sum (filling, flat top and decay). The model should describe the plant behaviour
sufficiently well for a field gradient of 14 MV/m and should be validated for a field gradient
of 13 MV/m. This state space model is a discrete time model as well with a black box
model structure. The parameter disturbance is again directly resembled in the third input.
Because the model should describe the plant behaviour in a large signal sense, the shape
of the parameter disturbance input p(t) is a continuous partwise linear trajectory.

For the parameter estimation the same algorithm as used for the partwise identification with
parameter disturbance input is used (see Figure 5.10). In the validation process it should
be clarified how well the model maps input data with a different level on the measurement
outputs of the vector sum. The validation is done using two different ways: First the state
space model matrices and p(t) are fixed and the validation data is entered into the model.
Secondly, only the state space matrices obtained for the data set used for identification is
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Figure 5.13: Eigenvalue distribution of 3rd order large signal models

fixed and for the validation data a new disturbance input signal is estimated. By comparing
the results it can be seen how accurate the state space model itself can handle validation
data and to which extend a newly estimated disturbance input improves the validation
performance. From a physical point of view, the parameter disturbance depends in a way
on the cavity detuning which is gradient dependend. It is therefore assumed that the newly
estimated p(t) for a different gradient has a gradient dependent level.

To obtain the model the following strategy is used:

• Parametrize the model structure and p(t) for data (ID data) recorded for different field
gradients (13 MV/m, 14 MV/m and 15.6 MV/m) by using the parameter estimation
algorithm shown in Figure 5.10.

• 1. validation step: Validate all models with a data set that has not been used for the
parameter estimation. Here, data recorded at a field gradient of 13 MV/m is used for
validation. In the first step the same p(t) is used as the one estimated for the model
on basis of the original ID data.

• 2. validation step: Validate all models again with the validation data set of gradient 13
MV/m but estimate a new p(t) for the validation data while the state space matrices
are fixed. Thus, the information about the I/O behaviour contained in the parameter
disturbance signal can be isolated.

• Benchmark the models by taking the residual error functionals J(e,R) for the original
ID data and both validation procedures into account.
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Figure 5.14: Comparison of validations for model GLDB3x2u2y1d with newly estimated
input p(t) and same p(t) obtained by parameter estimation of state space matrices

Discussion of results

The resulting residual error functional values for this procedure are presented in table
5.2. When inspecting the error functional values some interesting results can be seen. Of
course, the value of J in the validation procedure is lower if another p(t) is estimated but
the residual values significantly differ even for models obtained for the same gradient. This
can be seen comparing the values of J(e,R) with a newly estimated p(t) in validation of
models 5 and 6. The lower the field gradient of the model becomes the lower becomes the
values of J(e,R) for obtained for validation, which is obvious because validation data of
the lowest used gradient (13 MV/m) is used. The eigenvalue distribution of the obtained
models for eight different data sets is presented in Figure 5.13. It can be seen that the
eigenvalues are distributed in two narrow intervals: The models posess real eigenvalue close
to zero and either two real or two complex conjugated eigenvalues with a small imaginary
part and a real part close to one. However all models are stable and do not have any
transmission zeros. Physically, no transmission zeros have to be claimed for the resonator
structure and the reason for the lack of transmission zeros seems to be that the data has
not been preprocessed e.g. by filtering or removal of trends, which frequently leads to
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Figure 5.15: Parameter disturbance input p(t) for estimated for ID data and validation
data (with same state space matrices)

transmission zeros of the identified model.

The model performance of model 8 for the original ID data is shown in Figures B.2 and B.3
(zoom on flat top). It can be stated that this model describes the large signal behaviour for
this data set very well which is emphasized by the lowest value of the error functional for ID
data (J(e,R) = 1.0105 · 107). The validation performance is shown in Figure 5.14. With
a newly estimated parameter disturbance input the measured output data of a different
field gradient is reproduced acceptably as well while the model performance with the same
p(t) as for the ID data becomes visible worse. The signals p(t) for this model are shown
in Figure 5.15. Here it can be seen that the basic shape of the signals is similar but that
the newly estimated parameter disturbance for the validation data has a lower maximal
value. To correlate this with the lower field gradient would make sense but cannot be
proven rigorously because of the missing physical interpretability of the values of p(t). The
frequency response of the model is shown in figure B.6. The matrices of the discrete time
state space model number 8 are:
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Table 5.2: Residual error functional values for estimated third order large signal models
with parameter disturbance input

Model No. J (ID data) J (validation, old p(t)) J (validation new p(t))

1 1.1422 · 107 8.8667 · 109 3.5612 · 108

2 1.1525 · 107 8.5349 · 109 7.5375 · 108

3 1.1239 · 107 6.3027 · 107 2.5505 · 107

4 1.0976 · 107 7.3411 · 107 1.5509 · 107

5 1.0997 · 107 7.8009 · 107 1.668 · 107

6 1.0900 · 107 4.6912 · 107 3.7562 · 107

7 1.032 · 107 5.8842 · 107 3.2905 · 107

8 1.0105 · 107 9.8532 · 107 1.8547 · 107

9 1.0776 · 107 1.1188 · 107 1.1749 · 107

10 3.0691 · 107 4.5856 · 107 3.4932 · 107

Discrete state space model GLDB3x2u2y1d

A =




0.998700 −0.001107 −0.001634
−0.000692 0.9924 0.07687
−0.003129 0.02193 0.001143


 , (5.8)

B =




4.978 · 10−7 −2.492 · 10−7 7.811 · 10−12

−1.911 · 10−5 −1.487 · 10−6 −3.945 · 10−10

0.0002475 2.901 · 10−5 5.089 · 10−9


 , (5.9)

C =

(
3.364 · 104 1709 33.94
−2.499 · 104 7859 546.5

)
, (5.10)

D =

(
0 0 0
0 0 0

)
(5.11)

Sampling time: T = 1 · 10−6s

The model has the following real eigenvalues λi

λ =



−0.00055

0.9989
0.9939


 .

This model will be benchmarked against an output error MIMO model without disturbance
input that is presented in the next section. According to table B.1 the abbreviating term
GLDB3x2u2y1d is used for the large signal I/O behaviour model with parameter disturbance
input.

Comparison of the model GLDB3x2u2y1d with the resonant circuit model
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Table 5.3: Large signal I/O behaviour model benchmark

Model J for ID data

Parametrized resonant circuit model
with ODE for detuning

1.14332 · 108

GLDB3x2u2y1d 1.1855 · 107

The developed large signal model with the parameter disturbance input (GLDB3x2u2y1d)
describes the RF-field behaviour during the RF-pulse more accurately than the resonant
circuit model with the obtained parametrization. The lowest error functional values of the
parametrized resonant circuit model and the model with the estimated disturbance input
can be directly compared because the models describe the RF-pulse and the decay phase
(see table 5.3).

The difference is more than one degree in magnitude. The results are shown only for the
simulation results with ID data because the resonant circuit model’s validation data per-
formance is certainly poorer than its ID data performance. Moreover, the error functional
values for validation of the model GLDB3x2u2y1d are lower than the resonant circuit mod-
els error functional values for simulations with ID data. The good performance is caused by
the parameter disturbance input which has been motivated by the time varying detuning
parameter in the resonant circuit. However even if the same parameter disturbance input
that has been estimated for ID data is used for validation with a different gradient, the
model performance of model GLDB3x2u2y1d is better than the resonants circuit model
performance.

5.4 Output Disturbance model

Figure 5.16: Two input two output model of TTF2

The next approach to model TTF2 does not take the structure of the resonant circuit
model into account for any kind of constraints. TTF2 is modelled using a multivariable
black box model structure with two inputs and two outputs (see Figure 5.16). Disturbances
are considered as output disturbances entering the output channels Vr and Vi. Here the
more classical way of parameter estimation in system identification is used and applied with
MATLABs System Identification Toolbox:
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1. First the data is preprocessed, which involves the selection of the time interval of the
data, prefiltering, removal of means or linear trends etc. and will be further explained
for the large and small signal behaviour models.

2. The next step is the choice of the parameter estimation method. Here only discrete
time state space models are estimated via subspace methods ( n4sid command in
MATLAB)

3. Model validation can directly be done after the model parameters are estimated using
the toolbox.

An accurate low order large signal model has already been presented in the previous section
(model GLDB3x2u2y1d) but an additional large signal model obtained with this approach
will be presented as well. The performance of the large signal models will be compared.
Benchmarking the models int this context is done using residual error functional values.

The main focus however with this MIMO model approach lies on models for the small
signal behaviour of the plant during the flat top phase. An accurate small signal model is
presented in Section 5.4.2.

5.4.1 Large signal I/O behaviour MIMO model

To compare the two different modelling approaches using a parameter disturbance input
vs. using purely output errors a large signal behaviour MIMO model without disturbance
input has been estimated. The model should describe the two phases filling and flat top, i.e.
the system behaviour during the RF pulse. Because control action takes part during the
filling and flat top phase anyway the omission of the decay phase for parameter estimation
of the large signal model is reasonable if the RF-pulse time interval is thus described more
accurately. However, the third order model GLDB3x2u2y1d is able to describe all three
phases accurately.

The following large signal I/O behaviour model deduced in the subsection will be abbrevi-
ated by GLDB9x2u2y. It should be denoted that all output disturbance models presented
in this chapter have been obtained in an iterative way by varying data preprocessing meth-
ods etc.. Here only the best obtained models for large and small signal plant behaviour are
presented. The models are identified for a field gradient in the cavities of 14 MV/m and
are validated by using data recorded for a field gradient of 13 MV/m.

Preprocessing

The model GLDB9x2u2y is developed on the basis of preprocessed measurement data. The
preprocessing steps are:
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• Omitting the decay phase (as discussed) by limiting the data time interval on the
beginning of the RF-pulse to the end of the flat top. The first 6 samples before the
start of the RF-pulse are omitted as well, such that only the samples 6 to 1296 from
originally 1 to 2048 are considered for the parameter estimation of the model.

• The measurement data of the output signals is corrupted by a main noise component
at 250 kHz caused by electronic components. This has been discussed in chapter
5.2.3. Therefore the measurement I/O data has been filtered by a lowpass filter with
a cutoff frequency of 100 kHz. For the large signal model performance the focus on
the frequency range up to this cutoff frequency will definitely be sufficient.

Estimating the state space matrices

Before the parameter estimation process a model structure needs to be chosen as described
in Chapter 3.3. Discrete time state space models are chosen for the applicability of the
subspace method n4sid implemented in MATLAB and the model order is again chosen
by inspection of the singular values of the measurement data Hankel matrix. The singular
values can be visualized for different model orders by the MATLAB System Identification
Toolbox and have exemplarily already been shown in Figure 5.6.

The parametrization of the state space model structure is done using subspace methods
(n4sid). The initial states are estimated by the algorithm as well. The general form of a
discrete time state space model structure in the System Identification Toolbox is

x(k + 1) = Ax(k) +Bu(k) +Ke(k) (5.12)

y(k) = Cx(k) +Du(k) + e(k) . (5.13)

The matrix K can incorporate properties of the disturbance and how it couples on the
states but we will enforce K = 0 such that the state space model has an output error
structure.

Various model orders have been tested according to the singular value distribution in fig-
ure 5.6. The resulting models have been benchmarked by means of the residual value of
the squared error functional J between model output and measurement data. For the
benchmark this error functional is computed for different data sets:

• The data used for the identification of the model (in the following called ID data).

• For validation input data. Validation data is data that has not been used for the
identification of the model and ideally has different properties (e.g. amplitude and
bandwidth) than the ID data. In this case measurement data for signal type 3 (ban-
dlimited white noise superimposed on the feedforward signal) as input with a gradient
of 13 MV/m is used for validation. See chapter 5.2.2 for more details on the signal
types used for the system identification of TTF2.
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Table 5.4: Residual error functional values for estimated models of different order

Model order J for ID data J for validation data

6 5.3024 · 107 4.7873 · 107

7 5.527 · 107 4.8307 · 107

8 4.5337 · 107 4.2323 · 107

9 4.3846 · 107 4.1362 · 107

10 4.416 · 107 4.4325 · 107

The residual error functional values for different model orders are presented in table 5.4. The
state space model of order 9 has the lowest error functional values for both the ID data and
the validation data and will be further investigated. It will be abbreviated GLDB9x2u2y
according to table B.1. Remarkable is the fact that the error functional values for the
validation data are lower than for the ID data. This is normally not the case but an expla-
nation could be that the validation data set is less corrupted by disturbances. Physically,
the Lorentz force detuning of the cavities is gradient dependent, i.e. the disturbance due to
detuning has less influence on the validation data with a gradient of 1MV/m less than the
ID data’s gradient. The validation has been carried out with data of gradient 15.6 MV/m
as well and for all models higher residual error functionals have been obtained which would
support the assumption. The frequency response of the model is presented in Figure B.7.

The comparison between model outputs of GLDB9x2u2y and measurement data for simu-
lations with ID data and validation data are shown in Figures 5.17 and 5.18. It can be seen
that the real part of the measured vector sum is approximated better than the imaginary
part. This is also the case with model GLDB3x2u2y1d. The reason could be measurement
hardware (so called I-Q-detectors).

The eigenvalues λi and transmission zeros of the model GLDB9x2u2y are displayed in
Figure 5.19. Their numerical values of the eigenvalues are

λ =




0.3593
0.7359± i0.6098
0.8562± i0.449

0.9985
0.9771
0.8079
0.8533




,

(
|λ2,3|
|λ4,5|

)
=

(
0.9557
0.9668

)
.

The model is stable because |λi| < 1, i = 1, . . . , 9 holds but it is non-minimum phase because
of five transmission zeros with a magnitude larger than one. This must be considered when
applying high gains in feedback because the closed-loop system can become unstable (see
[15] for more details).

Comparing the model performance of GLDB9x2u2y and GLDB3x2u2y1d
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Figure 5.17: Output of model GLDB9x2u2y for ID data

Table 5.5: Large signal I/O behaviour model benchmark

Model J for ID data J for validation data

GLDB9x2u2y 4.3846 · 107 4.1362 · 107

1.1855 · 107 (if p(t) is newly estimated)
GLDB3x2u2y1d 1.1855 · 107

9.8532 · 107 (if p(t) identified for ID data is used)

For the comparison it important to clarify that the error functional values J(e,R) of model
GLDB3x2u2y1d contains the model deviations in the decay phase after the RF-pulse. The
model GLDB9x2u2y has been developed only for the phase of the RF-pulse. The absolute
values of the error functionals are thus not directly comparable. The comparison of the two
best large signal I/O behaviour models obtained in this chapter yields that the third order
model with the parameter disturbance input GLDB3x2u2y1d predicts output data more
accurately for ID data and validation data than the ninth order model GLDB9x2u2y (see
table 5.5). The error functional values are lower for ID data simulation and validation with
a newly estimated parameter disturbance input than the error functional values of model
GLDB9x2u2y although the deviations in the decay phase are included in the error fuctional
of GLDB3x2u2y1d. If the same p(t) is used for the validation process as the p(t) that has
been estimated for the ID data the residual error functional value increases and the model
performance becomes poorer.
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Figure 5.18: Output of model GLDB9x2u2y for validation data (Gradient 13 MV/m)

As it has been discussed in Section 5.3.3 the signal p(t) depends on the gradient. Because
for validation data a lower field gradient has been chosen the poorer model performance
makes sense. For the practical application of the models for controller design it can be
stated that the model GLDB9x2u2y is less sensitive to gradient variations because of its
good validation performance. However, if online identification of the plant will be used in
the future (see Chapter 7), the parameter disturbance p(t) could be estimated online after
an RF-pulse (the calculation takes less than a second) and the model GLDB3x2u2y1d will
be a more precise output data predictor.

5.4.2 Small signal behaviour MIMO model for the flat top

A very important issue for fulfilling the control objectives for the XFEL is a model for
controller design that describes the small signal behaviour of the RF-fields during the flat
top. The precise field stability during this phase is needed to achieve the required beam
quality for the XFEL to operate. In this section a small signal behaviour model is developed
using system identification techniques. Various diagrams that illustrate intermediate steps
in the identification process are presented in appendix C.

Inferring a small signal model for the flat top phase has been an iterative procedure because
of the various preprocessing steps necessary to obtain a representative data set for the small
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Figure 5.19: Eigenvalues and transmission zeros of 9th order large signal MIMO state space
model GLDB9x2u2y

signal behaviour of the plant. Representative in this context only means that the dynamical
plant behaviour, that should be resembled in the model is included in the data set. Oth-
erwise the state space matrices would include informations about the disturbance and an
output error model structure would not be longer present. Of course, this preprocessing can
not be realized ideally because in case of the linear accelerator system TTF2 the frequency
ranges and levels of the various disturbances are not known precisely enough to remove
their effects accurately from the measurement data. The MATLAB System Identification
Toolbox has prooven to be a very useful tool in the identification process because it offers
amongst other various preprocessing procedures for measurement data.

Here, a model for an operating point of 14 MV/m is presented that shows good validation
performance for other recorded data with the same field gradient and for data that has
been measured for a field gradient of 13 MV/m. The model is a discrete time state space
model of sixth order with two inputs and two outputs and will be abbreviated PLDB6x2u2y
according to table B.1. All disturbances are considered as output disturbances such that
we deal again with an OE model structure. By the iterative procedure of preprocessing
data the following steps have appeared to be succeeding:

1. First the range of the I/O data has been selected to pick only the flat top phase out.
This phase last from sample 500 to sample 1300. Here, a range from 480 to 1296
(again in samples) has been selected. An interval of 20 samples before the flat top
begins has been chosen because filtering will also be a preprocessing step that makes
the response of the output signals slower. This delay can then be dealt with limiting
the range again after filtering.
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Figure 5.20: Comparison of raw and preprocessed real input and output data

2. Linear trends are removed from the data. Especially in the real part of the vector sum
Vr a linear drift can be seen for all measurements that should not be incorporated in
the model.

3. Lowpass filtering is applied using a corner frequency of fc = 100kHz. The purpose is
to remove high frequent noise from the data, in particular the 250kHz noise component
caused by the local oscillators of the downconverter system.

4. Now the range of the data is adjusted again and the first 24 samples are cut off such
that the flat top interval remains.

5. As a last step the mean value of the data is removed to be sure no offset is identified.
An important point is that the removal of the mean is legitime because we deal with
an LTI model structure suitable for a limited range of operating points. The linearity
ensure that the output of the small signal model is superimposed the offset value set
by the operating point.

The comparison of measurement data and the shape of this input and output signals after
these preprocessing steps is shown in Figure 5.20 for the real input and output signals and
in Figure 5.21 for the imaginary signals vice versa.

The parametrization of the model structure is done using again the subspace algorithm
implemented in MATLAB, n4sid. First, the model order is selected by inspecting the sin-
gular values of the preprocessed datas Hankel matrix of the impulse response (see Figure
5.22). Because of the drop in magnitude for model for model order six first model order
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Figure 5.21: Comparison of raw and preprocessed imaginary input and output data

five has been choosen. Even by optical inspection of the model output compared to mea-
surement data the bad model performance was evident because the concave shape of Vi
could not be described at all by the model. As a result higher order model structures have
been parametrized by n4sid. The appropriate model order to describe the small signal I/O
behaviour of TTF2 seems to be order six and the resulting model is PLDB6x2u2y.

The comparison of model output and measurement data of the data used for the identi-
fication of the model is shown in Figure 5.23. The performance so far can be considered
adequate but the model must be validated to proove its ability to describe the plant I/O
behaviour for other than the ID data. The model has the following eigenvalues λi and
transmission zeros κi

λ =




0.8943± i0.4278
0.8853
0.9984

0.9833± i0.1403


 ,

(
|λ1,2|
|λ5,6|

)
=

(
0.9914
0.9932

)
.

κ =




0.8910± i0.3370
0.6696
0.9949


 |κ1,2| = 0.9526 ,

which characterize the model to be stable and minimum-phase.

For the validation of the model two sets of data have been used: Data for a field gradient
of 14 MV/m as well as data for a field gradient of 13 MV/m. The assumed reproducibility
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Figure 5.22: Singular values for different model orders of the Hankel matrix of preprocessed
measurement data

of plant behaviour because of the gradient dependent detuning lead to the reasonable as-
sumption that the validation performance must be adequate at least for the data set with
the same gradient as the ID data. The results can be seen in Figure 5.24 and the model
indeed performs well in this first validation test. The validation results for data of type 3
(bandlimited noise superimposed on feed forward tables) with a gradient of 13 MV/m is
presented in Figure 5.25.

The model reproduces the output data of this lower gradient data set even more accurate
than the validation data with the same gradient and can therefore be considered an adequate
small signal model in the frequency range up to 100KHz and for an operating point of 14
MV/m. The frequency response of the model is shown in appendix C.
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Figure 5.23: Model performance compared to measured ID data

Discussion of results

The small signal model is not compared in the sense of error functionals with the large
signal models because it describes only the flat top phase and a variety of preprocessing
steps have been used to develop it. All models have in common that they are stable but
have eigenvalues located closely at the unit circle. The small signal model PLDB6x2u2y
and the large signal model with estimated parameter disturbance input GLDB3x2u2y1d
are minimum phase models, while the model GLDB9x2u2y has transmission zeros with
a magnitude larger than one thus it can lead to unstable closed loop behaviour if high
gains for control are used. All models show very good validation performance. Because the
validation performance of the model GLDB9x2u2y is particularly good if it is considered
that it does not contain information about a parameter disturbance it will be used for the
design of RF-field controllers using response optimization for the large signal behaviour.
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Figure 5.24: First model validation performance (Validation data of type 3 with a gradient
of 14 MV/m)
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Figure 5.25: Second model validation performance (Validation data of type 3 with a gradient
of 13 MV/m)
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Chapter 6

Controller design by response
optimization

In this chapter approaches to controller design for the RF-fields in the first accelerator
module (ACC1) of TTF2 are made using one of the developed and in the previous chapter
presented models. Investigations of the performance of multivariable controllers will be
pointed out. A special focus shall be the reduction of overshoot during the transient from
filling to flat top phase and the inestigation of controller performance with respect to given
actuator constraints.

An important point is the choice of an appropriate controller structure, which will be
disscussed in Section 6.1. This decision depends mainly on the model structure and the
models characteristics. Ideas for the implementation of a freely parametrizable digital filter
embedded in an FPGA structure have been developed. With this hardware it will be
possible to test various multivariable RF-field controllers at TTF2. A brief outline of this
signal processing hardware and its restrictions on the controller structure will be given.

For the parametrization of the controller optimization techniques embedded in the SIMULINK
Response Optimization Toolbox of MATLAB are used. The advantage is that issues like
level limitations of hardware components, actuator constraints etc. and signal bounds like
maximal overshoot width can be given as constraints for the controller parameter adjust-
ment. This signal constraints resemble nonlinearities in the control loop. The controller
parameter estimation is presented in Section 6.2 and the simulation results for different
multivariable controllers are shown in Section 6.3. In order to further approach the given
control objectives improvement of hardware and the measurement system must be done.
High performance controller synthesis methods will have to be applied. An outlook on these
topic will be given in chapter 7.

The control objectives regarding amplitude and phase stability during the flat top of the
RF-fields are formulated for the fields vector sum are formulated in chapter 2.2.7. They
demand precision in amplitude and phase by a factor of 10−4. In case of ACC1 the vector
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sum of eight superconducing cavities is to be controlled.

6.1 Controller Structures

In the first instance the controller structure is determined by the number of the variables
to be controlled (measured output signals of the plant) and the actuating signals (input
signals of the plant). In case of ACC1 of TTF2 we have 2 actuating signals ur and ui (which
resemble the currents Ir and Ii in the resonant circuit model) and two output signals yr
and yi which are the real and imaginary part of the vector sum output of the complex
RF-field vectors (yr = Vr, yi = Vi). The actuating signals are the sum of the controller
output signals (uc,r, uc,i) and the feedforward signals fr and fi. The deviations from the
reference trajectories (rr,ri) of the vector sum are the input signals of the controller and
are calculated as follows

er = rr − Vr , (6.1)

ei = ri − Vi . (6.2)

In the framework of this thesis only discrete time controllers are designed. An advantage
is that they can easily be implemented in the digital hardware of the signal processing
system of TTF2. Therefore in the following considerations only discrete time controllers
are considered. The controller structure mapping plant output signals onto actuating signals
can be expressed by (

ur
ui

)
= Cc ·

(
yr
yi

)
. (6.3)

Each element Cij of the controller matrix Cc can be represented in the discrete time frame-
work as a transfer function in the complex variable z (see Chapter 3.1) as follows

Cc(z) =

(
C11(z) C12(z)
C21(z) C22(z)

)
. (6.4)

The order of the transfer functions depend on the control algorithm used which will be
discussed in the following sections. The structure of the controller matrix C c is mainly
determined by the coupling of input and output signals of the multivariable plant. Consider
a representation of the plant as a transfer function matrix Gp in discrete time domain

(
yr
yi

)
= Gc ·

(
ur
ui

)
, (6.5)

where G can be expressed by

Gp(z) =

(
G11(z) G12(z)
G21(z) G22(z)

)
. (6.6)

If G12(z) = G21(z) = 0 holds the plant Gp consists of two decoupled subsystems and a
decentralized controller consisting of two SISO controllers in this case can be used.
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Figure 6.1: LLRF control structure with decentralized proportional feedback controller and
feedforward

However, the transfer functions of all models of the RF-field behaviour discussed in this
thesis have nonzero coupling elements for plant input and output signals. The only de-
coupled model structure is the resonant circuit model (see Section 4.1, eq.(4.29)) for the
special case that the detuning is zero (∆ω = 0 rad/s), which is an unreasonable assumption
during an RF-pulse due to the field gradient dependent Lorentz forces causing detuning. It
seems to be promising that replacing the decentralized P-controller (see Figure 6.1) by a
multivariable controller improves the performance.

Structure of digital PID-controllers

A commonly used controller structure for single input/single output (SISO) systems is the
PID controller. In continuous time domain the control law of a PID controller is

u(t) = kp +
1

TI

∫ t

0
e(τ)dτ + kDė(t). (6.7)

The output of the controller depends proportionally on the actual control error (P part),
on the integral of the control error (I part) and on the actual change with respect to time
of the error, the derivative of e(t). Frequently used subsets of the PID controller structure
are e.g. P- and PI controller.

The structure of a PID-controller can be transferred to discrete time domain by using
numerical approximations for the integral and the derivative in continuous time domain,
[16]. Using these approximations and the z-transform the three terms in eq.(6.7) can be
representated as the discrete time control law

U(z) =

(
kp +

T

2TI

z + 1

z − 1
+
kD
T

z − 1

z

)
E(z) , (6.8)

where T denotes the sampling time. The second term in the bracket resembles the approx-
imation of the integration and the third term approximates the continuous time derivative.
An important point is that the coefficients of these terms in eq.(6.8) depend on the sampling
time. The discrete time transfer function of the controller can be expressed as

CPID(z) =
c2z

2 + c1z + c0

z(z − 1)
, (6.9)
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which is a transfer function of second order with the coefficients

c2 = kp +
T

2TI
+
kD
T
, (6.10)

c1 = −kp +
T

2TI
− 2kD

T
, (6.11)

c0 =
kd
T
. (6.12)

The structure of the PID controller can be used for MIMO systems as well. In the framework
given by eq.(6.4) each element Cij can be a transfer function parametrized by means of
eq.(6.9), thus representing a discrete time PID control law for the respective controller
input channel i. In the following section a hardware will be presented which will be used
at DESY to implement multivariable controllers for TTF2.

Controller implementation in an FPGA

FPGA is the abbreviation for Field Programmable Gate Array. It is a programmable logic
device that incorporates integrated digital electronic circuits whose connections are not fixed
but can be rearranged by programming. Thus, the FPGA enables configurable computing
based on hardware dynamically adapted to a specific problem, [10]. A further advantage
besides the reconfigurability of the hardware is that an FPGA allows parallel computing
and can perform logical operations orders of magnitude faster than conventional signal
processors.

A central focus of research concerning the LLRF control system of TTF2 is the exchange
of the DSP system by an FPGA based system to make the signal processing for the control
application more versatile and faster. On an FPGA digital filters can be realized that can
represent a parametrizable controller structure in discrete time domain .

An FPGA based controller structure has been designed at DESY that resembles a mul-
tivariable discrete time transfer function matrix of four biproper1 second order transfer
functions.

Cc(z) =



K11

b11z2+a11z+1
d11z2+c11z+1

K12
b12z2+a12z+1
d12z2+c12z+1

K21
b21z2+a21z+1
d21z2+c21z+1

K22
b22z2+a22z+1
d22z2+c22z+1


 (6.13)

Each transfer function matrix Cij(z) is characterized by five parameters that can be chosen
by the coefficients. The coefficients of the transfer functions determines the position of two
zeros and two poles of the transfer function in the complex plane as well as a gain factor. To
be able to enforce derivative action by the controller, the structure illustrated in eq.(6.13)
will be enhanced by one coefficient νij in the denumerators to be able to place poles at the

1Biproper means that the degree of the numerator polynomial in z is as high as the denominator
polynomial. A biproper system can follow step signals in the input directly.
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origin such that eq.(6.13) becomes

Cc(z) =



K11

b11z2+a11z+1
d11z2+c11z+ν11

K12
b12z2+a12z+1
d12z2+c12z+ν12

K21
b21z2+a21z+1
d21z2+c21z+ν21

K22
b22z2+a22z+1
d22z2+c22z+ν22


 (6.14)

The designed P- and PI-controllers in this thesis are in the form of eq.(6.13) such that the
controllers can be implemented immediately on the existing FPGA hardware and tested at
TTF2. PID-controllers are developed with respect to the the structure in eq.(6.14). In the
next section it is shown how standard control algorithms consisting of proportional (P),
integral (I) and derivative (D) feedback of the control error can be transformed to the form
of eq.(6.13).

6.2 Optimization of controller parameters

The task is to test multivariable controller structures for the RF-field stabilization in sim-
ulation by using one of the developed models for the module ACC1 of the linear accelera-
tor system. The SIMULINK Response Optimization Toolbox of MATLAB can be used to
parametrize a controller structure with respect to constraints. These constraints can be
specified reference trajectories that should be tracked by the plant output, actuator lim-
itations, constraints on the step response of a system, signal limitations etc.. Especially
actuator constraints and signal limitations resemble nonlinear elements in the control loop.
For most linear controller design methods including signal constraints in the design is only
in possible to a limited extend. The SIMULINK Response Optimization Toolbox is a very
versatile tool to test whether a controller structure is adequate to fullfill the control task
for an existing model especially if constraints are involved. However, this method can not
be considered a high performance controller method like mixed sensitivity H2/H∞ design
(see Chapter 7) and shall be used here to get a first impression of the performance of
multivariable controllers for the control problem at hand.

For the model GLDB9x2u2y that has been illustrated in Chapter 5.4.1 multivariable P-,PI-
and PID-controller have been designed and benchmarked with respect to their performance
regarding the given control objectives. A large signal model has been chosen for these in-
vestigations of multivariable-controllers because actuator constraints specified for the whole
RF-pulse and the transient behaviour between filling and flat top should be taken into ac-
count. The controller shall enforce tracking of the reference trajectories rr and ri when the
feedforward signals are applied to “drive” the model of the ACC1 system. The feedforward
and reference signals are chosen for an operating point of 14MV/m. Open loop measure-
ment data of the vector sum of ACC1, transformed from complex signals to amplitude and
phase, for this gradient is shown in Figure 6.2. The control problem is therefore a tracking
problem with constraints. Disturbances are considered as output disturbances here such
that the MIMO large signal model without disturbance input has been chosen for this initial
multivariable controller design.
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Figure 6.2: Vector sum amplitude and phase of open loop measurement data. The reference
trajectories are specified until the end of the RF pulse

The control loop including the model, the controller structure of eq.(6.13) and the input
signals is implemented as a SIMULINK model. The estimation of its parameters is done
according to specified constraints. Here, tracking of the reference trajectories for real and
imaginary part is specified as primary control objective. To specify the tracking objective
the output signals of the plant model are applied to a SIMULINK block element called
Signal constraint. In this element reference trajectoried for the block input signals or
signal constraints can be specified. Moreover, the free parameters are specified such that
simulations of the control loop are run iteratively while varying the specified parameters to
optimally match the constraints in the sense of minimizing an error functional similar to
the OE-model output error functional in Chapter 5.3.1.

Before the estimation process is started it must be specified what kind of numerical pa-
rameter estimation routine shall be used for solving the optimization problem of parameter
estimation. For the results presented in this chapter a combination of genetic algorithms
(GA), direct search and gradient based search routines has been used because the cost
functionals are likely to have several local minima. Therefore the GA based search method
is used first to get an appropriate initial parameter vector. Afterwards the direct serach
method is used with the termination parameter values of GA as initial values to closer
locate the minimum. Finally, a gradient based parameter estimation routine is used with
the initial values found by the direct search method to precisely locate the minimum found
by the two previous routines.
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Figure 6.3: SIMULINK model for control loop with tracking controller

However, there is no guarantee given that this is the global minimum of the cost functional
but the method used here for controller design should give only a first insught into the per-
formance of multivariable controllers. High performance controllers based on the developed
models will be designed in future work.
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Figure 6.4: SIMULINK model of control loop with constraints

Controller design procedure with respect to constraints

For the controller design the following steps are taken:

1. First the controllers are designed purely for tracking purpose of the RF-field reference
trajectory specified for real and imaginary parts of the vector sum. The tracking
included in the signal constraint block connected to the output signals of the model
in Figure 6.3. The controllers are benchmarked with respect to their peak-to-peak
and RMS errors during the flat top.
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2. To lower the peak to peak error due to overshoot occurring at the transient between
filling and flat top phase, a signal constraint is applied on the control errors for both
channels. The SIMULINK block diagramm of the control loop with the Signal con-
straint blocks is shown in Figure 6.4. The constraint on the error is tuned iteratively
such that the lowest overshoot for each controller is reached. Moreover, the actuator
constraint (see Chapter 2.2.8) limiting the input of the plant model is included.

The controller structures are compared with respect to the control errors during the flat
top and the restriction to the give constraints.

6.3 Simulation results

The performance of the designed multivariable P,PI and PID controllers is presented here.
For each controller the fixed coefficients to obtain the structure, the estimated coefficients
and the peak-to-peak/rms-error (calculated for the flat top interval according to eq.(2.5)
and eq.(2.6)) are specified. The flat top performance is shown in figures here while figures
showing the performance for the whole RF-pulse are included in appendix D.

For the P- and the PI-controllers, the controller structure of eq.(6.13) is used, for the PID
controllers the structure of eq.(6.14). The parameters are specified in tables. An “(f)”
behind a parameter value denotes that this value is fixed and not a free parameter in the
parameter estimation process.

For the interpretation of the results it shall be reconsidered that the model GLDB9x2u2y
(see Chapter 5.4.1) is stable, does not have any poles with magnitude one (no model internal
integrator) but is a nonminimum-phase model because it has zeros in the outer section of
the unit circle (see Figure 5.19).

Multivariable P-controller

The basic new controller structure is a multivariable proportional feedback of the control
error of each channel:

Cp
c(z) =

(
K11 K12

K21 K22

)
(6.15)

This control algorithm can directly be realized with the FPGA controller if all coefficients
except the gain factors and νij = 1 are set to zero (aij = bij = cij = dij = 0). The
performance is shown in Figures D.1 and 6.5.
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Figure 6.5: Performance of multivariable P-controller zoom (on flat top)

Result

In amplitude and phase significant overshoot can be seen. The closed loop system is unstable
because the magnitude and phase perform highfrequent oscillations during the flat top with
increasing magnitude. The reason is that the model is nonminimum phase and if the gains
are increased further the closed loop poles of the model approaches openloop zeros whose
magnitude is larger than one thus leading to instability. Moreover, no asymptotic tracking
is achieved because no integral action is enforced by the controller and the model does
not contain an internal integrator (pole with magnitude one). Integral action is needed to
achieve asymptotic tracking of the the piecewise linear tracejectories of the input signals.

Because of the unsatisfactory asymptotic tracking behaviour which can not be completely
achieved for this model by any P-controller the application of constraints on this control
loop is omitted.
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Table 6.1: Estimated P-controller parameters (νij = 1, (f))

Par. Val. Par. Val. Par. Val. Par. Val. Par. Val.

K11 1.7141 b11 0 (f) a11 0 d11 0 (f) c11 0 (f)
K12 0.0622 b12 0 (f) a12 0 d12 0 (f) c11 0 (f)
K21 5.0731 b21 0 (f) a21 0 d21 0 (f) c11 0 (f)
K22 3.8355 b22 0 (f) a22 0 d22 0 (f) c11 0 (f)

Table 6.2: P-controller performance

ea,p2p eϕ,p2p ea,rms eϕ,rms

Value in % 3.28 3.89 1.22 1.44

Multivariable PI-controller

Each transfer function in eq.(6.14) has the following transfer function:

Cij(z) = Kij
bijz

2 + aijz + 1

dijz2 + cijz + νij
. (6.16)

For a PI controller the coefficient c0 in the PID controller structure of eq.(6.9) is zero such
that the PI controller structure for one transfer function is

CPI
ij (z) =

c2z + c1

z − 1
. (6.17)

Comparing coefficients of eq.(6.16) and eq.(6.3) yields bij = dij = 0, νij = −1 and the free
parameters Kij and aij. The controller structure in the form realizable with the FPGA
harware becomes

CPI
c (z) =



K11

a11z+1
z−1

K12
a12z+1
z−1

K21
a21z+1
z−1

K22
a22z+1
z−1


 (6.18)

The performance is shown in Figures 6.6 and D.2. The corresponding estimated parameters
are included in table 6.4. The values of the control errors in amplitude and phase are listed
in table 6.3.

Table 6.3: PI tracking controller performance

ea,p2p eϕ,p2p ea,rms eϕ,rms

Value in % 1.79 4.46 0.3 0.63
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Figure 6.6: Performance of PI tracking controller

Result

Enforcing integral action leads to asymptotic tracking in amplitude and phase and for The
parametrized PI controller to a stable closed loop system. However overshoot in phase
is still about 2.4% of the setpoint and in amplitude 1.4% respectively. In amplitude and
phase oscillations are present which could be suppressed by introducing a transmission
zero. Increasing the gain however would lead to higher overshoot. The next step is to
parametrize a PID controller to check how the transient behaviour can be influenced by
introducing feedback of the time derivative of the control error.

Multivariable PID-controller

Recalling the transfer function elements of eq.(6.14)

Cij(z) = Kij
bijz

2 + aijz + 1

dijz2 + cijz + νij
.

and the PID controller structure of eq.(6.9)

CPI
ij (z) =

c2z
2 + cz1 + c0

z(z − 1)
,
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Table 6.4: Estimated PI-controller parameters (νij = −1, (f))

Par. Val. Par. Val. Par. Val. Par. Val. Par. Val.

K11 -0.8373 b11 0 (f) a11 -1.178 d11 0 (f) c11 1 (f)
K12 -2.2159 b12 0 (f) a12 -0.7875 d12 0 (f) c11 1 (f)
K21 0.3307 b21 0 (f) a21 -1.8072 d21 0 (f) c11 1 (f)
K22 -5.2523 b22 0 (f) a22 -1.1943 d22 0 (f) c11 1 (f)

yields for the coefficients
dij = 1 , cij = −1 , νij = 0 ,

such that the controller structure becomes becomes

CPID
c (z) =



K11

b11z2+a11z+1
z2−z K12

b12z2+a12z+1
z2−z

K21
b21z2+a21z+1

z2−z K22
b22z2+a22z+1

z2−z


 (6.19)

The performance is shown in Figures 6.7 and D.3. Table 6.5 shows the corresponding
estimated parameters and table 6.6 the the control errors in amplitude and phase.

Table 6.5: Estimated PID-controller parameters (νij = 0, (f))

Par. Val. Par. Val. Par. Val. Par. Val. Par. Val.

K11 0.021 b11 0.6546 a11 -0.3883 d11 1 (f) c11 -1 (f)
K12 0.9058 b12 -0.6801 a12 -0.6732 d12 1 (f) c11 -1 (f)
K21 -0.1907 b21 0.4701 a21 -1.1657 d21 1 (f) c11 -1 (f)
K22 0.4255 b22 1.1696 a22 0.0094 d22 1 (f) c11 -1 (f)

Result

The parametrization of the PID controller leads to oscillations during the flat top but
asymptotic tracking is reached. The overshoot is 3.4% in amplitude and 4.8% in phase.
Clearly this parametrization estimated by the SIMULINK Response optimization toolbox for

Table 6.6: PID tracking controller performance

ea,p2p eϕ,p2p ea,rms eϕ,rms

Value in % 6.85 8.61 1.78 2.4
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Figure 6.7: Performance of PID tracking controller

the PID controller does not lead to optimal performance: PI controllers are a subset of PID
controllers which means that the performance of the optimally parametrized PID controller
can not be worse than the PI controller performance. The unreasonable parametrization
if the PID controller can have several causes: Either an error was present in the block
diagram, numerical problems occurred in the parameter estimation process or the model is
not good enough.

PI and PID controller design with respect to signal constraints

The constraints applied are signal constraints on the error signals of both channels to reduce
overshoot at the beginning of the flat top phase and signal constraints on the controller
output signal (sum of feedback signals and feedforward signals of each channel) to include
actuator constraints for the operating point of 14MV/m (see Chapter 2.2.8). The signal
constraints on the control errors have been adjusted iteratively to minimize overshoot.
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Figure 6.8: Performance of multivariable PI-controlled model with signal constraints

PI controller parametrized with respect to constraints

The initial parameters for the PI controller are the ones estimated without invocing con-
straints (see table 6.4). The constraints on the error signals that can be fullfilled with the
PI-controller are presented in table D.1. In the Figures 6.9 and D.7 the constraints and the
resulting control errors for a controller parametrization according to table D.1 are shown.

The resulting performance in amplitude and phase stabilization is shown in Figures 6.8 and
D.4. Moreover, in appendix D the performance by means of real and imaginary part of the
vector sum is illustrated (Figures D.5 and D.6).

Without violating the actuator constraints (Figure D.8) a significant reduction in overshoot
by 1.2% in amplitude and 0.7% in phase compared to the PI tracking controller without
constraints (see Section 6.3) has been achieved thus leading to a better transient behaviour
between filling and flat top interval and to lower control errors.
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Table 6.7: Estimated PI-controller parameters with respect to signal constraints (νij = −1,
(f))

Par. Val. Par. Val. Par. Val. Par. Val. Par. Val.

K11 -0.9521 b11 0 (f) a11 -1.8100 d11 0 (f) c11 1 (f)
K12 -2.0901 b12 0 (f) a12 -0.7505 d12 0 (f) c11 1 (f)
K21 0.3614 b21 0 (f) a21 -1.9181 d21 0 (f) c11 1 (f)
K22 -5.0786 b22 0 (f) a22 -1.2541 d22 0 (f) c11 1 (f)

Table 6.8: PI tracking controller performance with respect to signal constraints

ea,p2p eϕ,p2p ea,rms eϕ,rms

Value in % 1.19 2.18 0.16 0.35

PID controller parametrized with respect to constraints

The actuator constraints given are the same as for the PI-controller and are not violated
by the parametrized PID controller (see Figure D.12). The error signal constraints given
for the PI controller are violated by the PID controller with the obtained parametrization
(see Figures D.11).

The amplitude and phase performance for the PID controller parametrization that least
violates the signal constraints is shown in Figure 6.10 and Figure D.10. The achieved error
values of this PID controller are denoted in table 6.9 and its parameters are shown in table
6.10.

Overshoot in amplitude could be reduced by a factor of 2.7% and in phase by 1.9% compared
to the PID controller parametrized without respect to constraints. However, the problems
discussed for the PID controller parametrized without respect to constraints are still present.
The PID controller parametrization is clearly not optimal. Varying the initial values for
the parameter estimation did not improve the result which again implies structural errors.

Table 6.9: PID controller performance with respect to signal constraints

ea,p2p eϕ,p2p ea,rms eϕ,rms

Value in % 2.60 3.31 0.57 0.07
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Figure 6.9: Real and imaginary control errors for PI-controlled model with signal constraints

Discussion of results

The controller winning the benchmark is the PI-controller parametrized for signal con-
straints in the model. The resulting control errors are ea,p2p = 1.19, eϕ,p2p = 2.18,
ea,rms = 0.16 and eϕ,p2p = 0.35. With a multivariable P controller structure no asymptotic
tracking can be achieved because neither in the controller nor in the model integral ac-
tion is present that ensures asymptotic tracking of the piecewise linear input signals. The
PID controller ensures asymptotic tracking but shows a worse performance than the PI
controller which implies errors in its parametrization.

The control error values achieved in simulations with the PI controller are about a magni-
tude far from the XFEL-control objectives although no disturbance of the output signals
by the beam has been considered. The fact that even with this assumptions the control
objectives can not be fullfilled implies that changes in the controller structure alone are
not sufficient to fullfill the control objectives. Structural changes including rejection of me-
chanical disturbances by active damping with piezo-actuators, improvement of electronical
components to reduce noise etc. are crucial to reduce control errors. Moreover, disturbance
models are needed to adequately design disturbance rejection controllers.

However, multivariable control involving integral action will clearly reduce the control errors
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Figure 6.10: Amplitude and phase for PID-controlled model with signal constraints

during the flat top. High performance controller synthesis methods like mixed H2/H∞ de-
sign should also be applied. Their application without hardware improvements however will
not lead to the achievement of the control objectives because of the methods conservatism
due to robustness aspects.
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Table 6.10: Estimated PID-controller parameters with respect to signal constraints (νij = 0,
(f))

Par. Val. Par. Val. Par. Val. Par. Val. Par. Val.

K11 0.0198 b11 0.6525 a11 -0.3786 d11 1 (f) c11 -1 (f)
K12 0.8935 b12 -0.6826 a12 -0.6726 d12 1 (f) c11 -1 (f)
K21 -0.1832 b21 0.4884 a21 -1.1704 d21 1 (f) c11 -1 (f)
K22 0.4262 b22 1.1703 a22 0.0017 d22 1 (f) c11 -1 (f)
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Chapter 7

Conclusion and outlook

The construction of an X-ray free electron laser (XFEL) requires RF-fields in the supercon-
ducting cavities that are very precise in amplitude and phase. Besides improving technical
components of the accelerator system the vector sum control algorithm of the LLRF con-
trol system must be refined in order to make the XFEL project at DESY successful. The
synthesis of high performance controllers is model based, i.e. the quality of the designed
controller crucially depends on the accuracy of the model. The severe control objectives
regarding the amplitude and phase precision are formulated for the flat top phase of the
RF-pulse where the acceleration process of the electrons takes part. Therefore models of
the linear accelerator system do not only have to describe large signal behaviour of the
system accurately but also the small signal I/O behaviour of the RF-fields during the flat
top phase in particular. So far the dynamical behaviour of the superconducting cavities has
been described by a model that has been developed using first principles, namely analogies
of superconducting cavities to an electrical resonant circuit. The model is an LPV model
because it has the linear time varying parameter ∆ω(t), which resembles the detuning of a
superconducting cavity.

Although this model is approriate for physical analysis of the cavity behaviour its applica-
bility for controller design is poor because of its lack of accuracy. Model verification has
been performed using an output error structure. Parameter estimation algorithms minimize
the output error functional denoting the deviation of the model output from measurement
data to parametrize the model structure. The results have been presented in Chapter 4.
The poor accuracy of the model regarding small signal I/O behaviour during the flat top
phase and transient behaviour between filling and flat top motivates the development of
models by system identification.

System identification experiments have been designed and performed at the first accelerator
module of TTF2. Thus, experimental based grey and black box LTI models for the I/O
behaviour of ACC1 have been developed including large signal models for the whole RF-
pulse and its single phases as well as a small signal model for the flat top. Three models
proved particularly good output prediction performance for ID and validation data:
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• A third order large signal model (GLDB3x2u2y1d) describing the vector sum of the
modules during the RF-pulse by a third order state space model with an estimated
parameter disturbance input that takes effects of cavity detuning into account. The
model has been developed using subspace methods in combination with genetic algo-
rithms and direct search based parameter estimation for the parametrization of the
additional input signal. The model sets the benchmark of the large signal models
describing the RF-pulse and the decay phase of the RF-fields very accurately.

• A large signal ninth order state space model (GLDB9x2u2y) describing the RF-pulse
which has been developed with MATLABs System Identification Toolbox . The model
is an output error model that shows good validation performance although it does
not contain a parameter disturbance input.

• A small signal sixth order state space model(PLDB6x2u2y) for the flat top phase
developed using various measurement data preprocessing steps and very accurately
describing the flat top behaviour in a gradient range from 13MV/m to 14MV/m.

The models have been analyzed regarding their eigenvalues and transmission zero distribu-
tion. All models are LTI models and thus well applicable for a variety of controller design
methods.

The model (GLDB9x2u2y) has been chosen for a first design approach of multivariable con-
trollers. The design has been performed with respect to nonlinear elements in the control
loop like actuator constraints and signal limits. The signal limits have been included to
improve the transient behaviour of the vector sum signals between filling and flat top phase.
A multivariable discrete time controller structure consisting of four second order transfer
functions has been parametrized using the SIMULINK Response Optimization Toolbox such
that P-,PI- and PID-controllers could be benchmarked with respect to the control errors
during the flat top phase. The controller structure has been chosen with respect to appli-
cability in FPGA hardware. The results are promising and a PI-controller structure has
shown best performance so far without violating the given actuator constraints. Current
work involves the integration of the controller structure on an FPGA board.

However, the obtained simulation results are still about an order of magnitude away from
fullfilling the control objectives for the XFEL. It must be stated clearly that improving the
controller structure alone will not lead to the achievement of the control objectives. The
main aspect will be to improve measurement hardware and the actuating system by means
of lower noise levels. Moreover, the active vibration damping of the superconducting cavi-
ties using piezo-actuators must be further developed to effectively compensate mechanical
disturbances. New controller structures can possibly incorporate more actuating signals
once the active damping of cavity vibrations has evolved at TTF2. Thus, detuning of the
cavities can be actively reduced at each single cavity and the system will no longer be
underactuated. Future work on controller design should be the design of high performance
controllers e.g. mixed H2/H∞ controller synthesis in combination with evolutionary algo-
rithms, which is a current field of research. However, the conservatism in the design of
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robust control methods will certainly lead to problems in fullfilling the objectives without
improved hardware.

A further aspect of future work will be to determine how well the developed models describe
the first accelerator module of TTF2 in the presence of the electron beam and over longer
periods of time. The last aspect refers to the fact that the system constantly evolves and
changes over time because new components are added and the calibration is refined. Models
of the disturbances must be developed to design adequate disturbance rejection controllers.

A possible approach to overcome the problem that a parametrized model does not describe
the system over longer periods of time adequately is to use adaptive control which involves
online system identification and updating the controller parameters with respect to the
actual model parameters. In [4] an active identification for control of discrete-time uncertain
nonlinear systems is proposed. Active identification in this context means that the control
input of a system is used to drive the system state to points in state space such that
unknown parameters can be identified in finite time and the controller parameters are
adapted adequately. A similar approach could be used for identification of TTF2 in between
the RF-pulses because this time interval of up to one second remains unused so far.
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Appendix A

Singular value decomposition

For every matrix M ∈ Rl×m there exist matrices Q ∈ Rl×l and V ∈ Rm×m such that the
following decomposition is done

M = QΣV T . (A.1)

In eq.(A.1) Q and V are orthogonal matrices and Σ ∈ Rl×m is a diagonal matrix with
nonnegative elements. The diagonal elements σii of Σ are called singular values. The rank
of the matrix M is equal to the number of nonzero singular values.

Assume that the singular values are ordered in decreasing magnitude and p = min(l, m)

σ1 ≥ σ2 ≥ . . . ≥ σr ≥ σr+1 ≥ . . . σp . (A.2)

If there is a significant decay of magnitude in the singular values such that σr+1 . . . σp are
much smaller than σr the matrix M has full rank but is close to being singular. Therefore
r is called the numerical rank of M .

If qi denotes the ith column of Q and vTi denotes the ith column of V , eq.(A.1) can be
written as

M =
p∑

i=1

σiqiv
T
i =

r∑

i=1

σiqiv
T
i +

p∑

i=r+1

σiqiv
T
i = QsΣsV

T
s +QnΣnV

T
n . (A.3)

The matrices Qs ∈ Rl×r and V s ∈ Rm×r are formed by the first r columns of Q and V . By
the remaining columns the matrices Qn and V n are formed similarly. The term QnΣnV

T
n

on the right hand side of eq.(A.3) can be neglected if the corrresponding singular values
σr+1, . . . , σp are very small. Thus, eq.(A.1) can be approximated by

M ≈ QsΣsV
T
s . (A.4)

Furthermore noticeable is the following relation resulting from the orthogonality ofQ (which
holds for V analogously), [28]:

QQT =

(
QT
s

QT
n

)(
Qs Qn

)
=

(
I 0
0 I

)
. (A.5)

122



Appendix B

Diagrams for chapter 5
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Figure B.1: Measured vector sum signals
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Table B.1: Model name convention

Letter position index Abbreviating letter and meaning

G (global model for whole RF-pulse)
1

P (piecewise model for single phase)
L (linear model)

2
N (nonlinear model)

3 C (continuous time), D (discrete time)

model structure
4

W (white), G (grey), B (black)

5 model order

6 x (states)

7 number of control inputs

8 u (inputs)

9 number of outputs

10 y (outputs)

11 number of disturbance inputs

12 d (disturbance inputs)

13 number of model (if necessary)
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Figure B.2: Vector sum ID data (gradient 14MV/m, type 3 input) for third order large
signal model identification
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Figure B.3: Zoom on flat top of ID data shown in Figure B.2
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Figure B.4: Partwise identification results with partwise linear third input
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Figure B.5: Cross-correlation of input and output signals (maximum is at τ = 0)

126



Figure B.6: Frequency response of model GLDB3x2u2y1d
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Figure B.7: Frequency response of model GLDB9x2u2y
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Appendix C

Details of the small signal model
development

In chapter 5.4 a model that describes the small signal behaviour of TTF2 has been presented.
Here some diagrams visualizing certain preprocessing steps and modelling results are shown:

C.0.1 Periodograms of low pass filtered ID data

In the preprocessing the I/O data used for model parametrization has been low pass fil-
tered using a corner frequency of fc = 100 kHz. The frequency contents of the raw and
preprocessed I/O signals are represented in the two periodograms shown in Figure C.1 and
C.2.

The theory of periodograms is described thoroughly in [14], here only a brief description
shall be given. Suppose a sinusoidal signal u(t) with a frequency ω

u(t) = cos(ωt) = <(eiωt) (C.1)

with < denoting the real part of the Euler’s complex representation of trigonometric func-
tions. Considering a finite sequence of inputs u(t), t = 1, 2, . . . , N the following function
UN(ω) can be defined as

UN(ω) =
1√
N

N∑

t=1

u(t)eiωt . (C.2)

Furthermore considering values for ω = 2πk/N with k = 1, . . . , N eq.(C.2) forms the
discrete fourier transform of the sequence of signals for N frequencies ω called uN1 . Using
the inverse discrete fourier transform and the property of periodicity of u(t) the following
relationship can be obtained (omitting a detailed derivation)

u(t) =
1√
N

N/2∑

k=−N/2+1

UN (2πk/N)ei2πkt/N . (C.3)
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The contribution of the frequency ω = 2πk/N to the signal power of u(t) is resembled by
the absolute square value |UN (2πk/N)|2. A periodogram of a signal u(t), t = 1, 2, . . . , N is
thus defined by the value

|UN(ω)|2 . (C.4)
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Figure C.1: Periodogram of real input and output signals

From Figure C.1 and C.2 it can be seen that the high frequent noise at a frequency of 250
kHz is filtered out. The level of the individual frequencies has been decreased after the
preprocessing because the preprocessing involved removal of linear trends and mean values
as well thus leading to a lower signal power.

C.0.2 Frequency response

The small signal models frequency response is shown in Figure C.3.
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Figure C.2: Periodogram of imaginary I/O signals
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Figure C.3: Frequency response of small signal model PLDB6x2u2y
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Appendix D

Further Diagrams and tables for
controller performance
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Figure D.1: Large signal behaviour performance of multivariable P-controller
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Table D.1: Error signal constraints for PI controller

Time interval [µs] Signal range of er and ei

0 - 480 ±1000

481 - 540 -80 to 50

541 - 1300 ±30

Table D.2: Error signal constraints for PID controller

Time interval [µs] Signal range of er and ei

0 - 480 -1000 to 1000

481 - 540 -100 to 100

541 - 1300 -50 to 50
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Figure D.2: Large signal behaviour performance of multivariable PI-controller (no signal
constraints)
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Figure D.3: PLarge signal behaviour performance of multivariable PID-controller (no signal
constraints)
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Figure D.4: Large signal behaviour performance for PI-controlled model with signal con-
straints
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Figure D.5: Real and imaginary part (for whole RF-pulse) for PI-controlled model with
signal constraints
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Figure D.6: Zoom on real and imaginary part for PI-controlled model with signal constraints

139



0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

−1000

−500

0

500

1000

Time [s]

re
al

 a
nd

 im
ag

in
ar

y 
er

ro
r 

si
gn

al
 [−

]

real error

imag error

signal constraint

Figure D.7: Real and imaginary control errors (zoom on flat top) for PI-controlled model
with signal constraints
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Figure D.8: Real and imaginary controller output signals (ur and ui) and actuator con-
straints (PI-controller)
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Figure D.9: Real and imaginary control errors for PID-controlled model with signal con-
straints
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Figure D.10: Large signal behaviour performance of PID-controlled model with signal con-
straints
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Figure D.11: Real and imaginary control errors for PI-controlled model with signal con-
straints
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Figure D.12: Real and imaginary controller output signals (ur and ui) and actuator con-
straints (PID controller)
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